

Bachelor of Computer Application

(B.C.A.)

Data Structure using C

Semester-III

Author- B.J. Mohite

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education

Mahal, Jagatpura, Jaipur-302025

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU

Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

EDITORIAL BOARD (CDOE, SGVU)

Syllabus

Data Structure Using C

Learning Objective

- To teach efficient storage mechanisms of data for an easy access.

- To design and implementation of various basic and advanced data structures.

- To introduce various techniques for representation of the data in the real world.

- To develop application using data structures.

- To improve the logical ability

Unit 1

Introduction to data structures: storage structure for arrays, sparse matrices, Stacks and Queues:

representation and application. Linked lists: Single linked lists, linked list representation of stacks

and Queues. Operations on polynomials, Double linked list, circular list.

Unit 2

Dynamic storage management-garbage collection and compaction, infix to post fix conversion,

postfix expression evaluation. Trees: Tree terminology, Binary tree, Binary search tree, General

tree, B+ tree, AVL Tree, Complete Binary Tree representation, Tree traversals, operation on

Binary tree-expression Manipulation.

Unit 3

Graphs: Graph terminology, Representation of graphs, path matrix, BFS (breadth first search),

DFS (depth first search), topological sorting, Warshall’s algorithm (shortest path algorithm.)

Sorting and Searching techniques

Unit 4

Bubble sort, selection sort, Insertion sort, Quick sort, merge sort, Heap sort, Radix sort. Linear and

binary search methods, Hashing techniques and hash functions.

References

- Gilberg and Forouzan: “Data Structure- A Pseudo code approach with C” by Thomson

publication

- “Data structure in C” by Tanenbaum, PHI publication / Pearson publication.

- Pai: ”Data Structures & Algorithms; Concepts, Techniques & Algorithms ”Tata McGraw

Hill. Reference Books:

- “Fundamentals of data structure in C” Horowitz, Sahani & Freed, Computer Science Press.

- “Fundamental of Data Structure” (Schaums Series) Tata-McGraw-Hill.

4.
c.

6.

Data Structure Using C

7. Circular Linked List....
Stack and Queue

3. Primitive OPerations on Stack

ln Order Traversal 5-18o. z
4 Iterative Traversing 5-20

6. Graphs
1. Graphs.........

1.1 Definitions and Te:rminology 6-1

1.2 RePresentation of GraPh 6-6

1.3 Adiacency List lmplementation 6'7

Shortest Path Problem

Data Structure Using C

5.

o,
7.
8.
9.

10.

11.
12.
'13.

2.
3.
4.

7.

F

''Tfi

eia4rs, I
Ensre GorueEPr AIUD

ETTRoDUGTTOIU TO

Dnrn $TRUGTURE

1. Fointers- An lntroduction

Programming can be defined as set of instructions that operates on a data to manipulate its value.
This data can be divided in two types as constants and variables. The basic difference between
variables and constant is their ability to change value at any point in the execution of program.
Constants have fixed values while variables take different values in the execution. This can be done

by providing memory space to variable in which contents can be changed.

Declaration of Variable

All variables must be declared before using them. Syntax to declare normal variable is,

(data type> (variabf e name>,'

where, data type can be one of the basic data types of C i.e. char, int, float etc. and variable name is
any valid C identifier name.

Data-Srus*n :Usi.qgr6 W
For example: Declaration of normal variable

int x=10;
int y;

Once the variable is declared, it will be provided memory space statically, (at compile time)
according to its data type, having address of its location and this memory location will be identified
with the name of variable.

Hence, from the prograrnmer's point of view the data can be manipulated by the name of variable
while it can be manipulated by its address (memory location) in the actual execution of program.

Diagrammatically above code can be shown as

Example I
int x:10:

65524

In this example, x is the normal variable having address 65522 its address of memory location and
/0 is the actual value stored at this address.

As shown in the above example x is referred as normal variable as C has provided a very special type
of vaiable pointer, most powerful as well as useful feature of it, which makes C different than other
programming language.

Consider another example

Example 2

int a:&x;

a

65522

65518 65520

In this example, a is the variable having address 65518 as its address of memory location and 65522
is the actual value stored at this address.

So, if we relate example I and example 2,it can be easily observed that, variable a has stored the

address of x as its value. This simple thing makes variable a to be treated as pointer variable rather
than normal variable.

Hence pointer ian be defined as follows:

Pointer is variable tltat stores memorv address of another variable.

x

10

Basic Concept and Introduction . ..

1.1 Usage of Pointer

Syntat to declare pointer variable

(data_type) * (var iabl e_name) ;

Where data type can be one of the basic data types of C i.e. char, int,
valid C identifier name.

float etc. and variable name IS

Declaration of pointer variable
int *a;

As defined above, pointer can store the address of another normal variable as its value

Syntax to initialization of pointer variable:

i. lnitializing pointer variable with address of normal variable-

Pointer_Variable = &Normal_Variable;
Forexomple: a = &x;

The unary or monadic operator and gives the 'address of a variable'.

ii. lnitializing pointer variable with array

Pointer_Variable = Array_Name; Or
Pointer_Vatiabfe = &Array_Name [0] ;

Forexample: int x[10] ;

a = xi or a = &x[0];
In both cases the starting address ofarray is assigned to pointer variable.

iii. Initializing pointer variable with character string -

char *Pointer_Variable = (,,String Constant,,);
For example.. char *p= ,,Vision,,;

As C programming has not provided separate data type for string, it can be declared either by using
ilray or using character pointer as shown in the above example.

The value stored at normal variable now can be retrieved bv two methods

l. Using normal variable itself

2. Using pointer variable.

To retrieve information from pointer variable
x=*a;

The indirection or dereference operator * gives the "contents ofan object pointed to by a pointer,,.

Ocd,15,Apr.15 - 2M

\Athat is use of (&)
address operator and
dereferencing (.)
ooerator?

Data Structure Using C Basic Concept and lntroducfion . ..

/*Program to demonstrate pointer variable */

#include<stdio . h>

#incl-ude<conio ' h)
void main (void)
{

int x=10; /* normal variable declaration */
j-nt * a; /* pointer variable declaraLion */

clrscr O ; /* to clear screen */
a-&x; /* Lo asslgn address of x Lo a */

printf("\n Address of x-%u",&x); /* address of x *f

priritf("\n Address of a:%u",ta); /* address of a *f

printf("\n Value at x=%d",x); /* value at x */

printf("\n Vafue at a=%u\n",a) ; / * value aL a *f

printf("Value at- x using pointer variable a=%d",*a); /* value at x */

getch () ;

]

Output

Address of x: 65522

Address of a: 65520

Value at x: l0
Value at a: 65522

Value at x using pointer variable a: l0

1.2 Advantages of Pointer

i. Pointers can be used to pass afguments withpass by address method.

ii. Similarly pointers can be used to pass array and string as an argument to the function'

iii. One of the most important features of pointer is that it can be used in dynamic memory

allocationto allocate and release memory dynamically (at run time).

iv. As pointer holds the address of another variable, data manipulation is done with address to get

execution faster.

v. pointers are more efficient to handle data structures like linked list, trees and graphs'

Basic Concept and Introduction ...

be used to store addresses of variables having different datavi. Pointer of void data type can

types.

For example:

void *ptr;
char ch;
int a;
fl-oat b;
nt-T=f.^h.
L./ ur qvrr,

ptr = &a;
ptr = &b;

/* ic rralid */
lLJI

/* is valid */
,Ilx rc \/eltn xl

/ Lv I

vii. The use of pointer to character string results in saving of data storage space in memory.

viii. A pointer reduces length and complexity of a program.

2. Dynamic Memory Allocation

As stated earlier variables can be declared before using them. This method of declaring variable is

called as static memory allocation. Hence the memory allocated statically (at compile time) must be

used during the execution of program without increasing or decreasing it as per requirement.

Consider the following example,

Suppose you hove invited some people on marriage party and you ltave ordered caterer'to prepare

food of 25 peopte. So food can be consumed when exact 25 people will arrive. But what is the case if
onty 20 people have come. The food of 5 people will be just wasted, and what if 30 people come, 5 of
them shouldfind some other resource as there is insfficientfood.

Same problem can be considered in case of programming.

As we know, in C programming when we declare array, its size should be mentioned.

For example

int arr [25] ;

With this array the memory for exact 25 elements will be declared. But, in most of the cases the user

does not know the number of elements to be entered.. So, in above example if user entered 20

elements, it will be wastage of memory for 5 elements; generally known as underflow. In another

case program will not allow user to enter 26ft element as it will be out of capacity of an array. This

situation is generally known as overflow. SO as to make user free from both the situations, the

memory should be allocated according to the requirement of user at run time (dynamically), instead

P-,a.la-'s$[rcJuJe,.Ujs.!f f ,g.S Basic Goncept and lntroduc'tion ...

of declaring it at compile time (statically). This technique of Dynamic allocation is a preffy unique

feature to C amongst high level languages. It enables user to create data types and structures ofany
size and length by allocating and de-allocating memory whenever required to suit the need of the

program.

Allocating memory space at run time is called as Dynamic Memory Allocation.

2.1 Dynamic lulemory Allocation Functions

5

'.15Qct.14- 4M
Explain different types of
dynamic memory
allocation functions.

Oct.2012- 4M

Explain dynamic memory
allocation functions with
their syntax.

Apr.10, Oct10 - 2M

Explain in brief the
functions of dynamic
memory allocation.

The C programming language has provided some built-in functions
for the dynamic memory allocation. These functions are grouped in
a header frle alloc.h. and those are as follows:

i. sizeof(): sizeof is a unary operator, which gives size of its
argument in terms of bytes. Any data type (int, float, char),
variables, array or even structures can be sent as an argument

to this.

For example.' sizeof (f loat) ;

This gives the bytes occupied by the float data type that is 4.

/* Program to understand the sizeofoperator */

#include(stdio . h>
main ()

{

scrucI-
{

char Name [10] ;

int RollNo;
}S;
inr No [10] ;

nri nff (I' si zc of structure = U d", sizeof (S)) ;
nrinff ("\n si ze of float = %d" ,sizeof (float))\ \rr v44

printf ("\n size of array = ?d" ,sizeof (No)) ;

i

Output

size ofstructure = 12

size of float: 4

size of anay - 2lt

ii. malloc(): This function is used to allocate a memory for required number of bytes. The
-:.Toty created by malloc at run-time should be assigned to the pointer to get starting address
oI rt.

Pata;$tr,rrduo,IJsil,rg,S

The prototype of the malloc function is as follows:
void * ptr = malloc (size) ;

Where size tells the specified number of bytes of memory that
should be allocated and ptr is pointer, which points to the
starting memory address that has been allocated.
For example
int *ptr;
ptr - (1nt *)malloc(20);
This allocates 20 bytes of memory space and its starting address will be assigned to the integer
pointer ptr.

Program to demonstrate malloc function
/x Program to accept n number and display those numbers in reverse order */

#incf ude(sLdio. h>
#include<conio. h)
#include(af l-oc. h)
void main (void)
{

lnt xnum;

int n, i;
clrscr O ;

printf("\n Enter how many numbers you
scanf ('r %dr' , an) ;

,/* dynamic memory allocation function
num = (int *) mafloc (n * sizeof (int)) ;

for (i=0; i(n; i+*)
{

printf (,,Enter Number : ,') ;
scanf ("?d", num) ;

num++; /* to move pointer to next lnnat-ian * //
]
printf ("You have accepted following mirnber in reverse order:,,);
for (i=0; i(n; i++)
{ num - -; /" to move pointer to previous location */

printf ("\tr %d", *num)
,'

]
gerch () ;

want to enter :");

Qct.2O11- 2M :

What is the difference

3:fl8 Marroc and

W
OutPut

Enter how many number you want to enter: 5

EnterNumber: 10

EnterNumber:20

EnterNumber: 30

EnterNumber:40

EnterNumber: 50

You have accepted following number in reverse order:

50

40

30

20

t0

iii. calloc(): This function is used to allocate a memory in multiple blocks for required ntrmber of

bytes to same type of object. The memory created by calloc at run-time should be assigned to

the pointer to get starting address of it.

The prototype of the calloc function is as follows:

void * ptr = cafloc (rec, size) ;

Where rec tells total number of blocks where each block is having memory specified by size

and ptr is pointer which points to the memory that has been allocated.

Generally calloc() function is used to allocate memory for array and strucfure'

For example
struct stud
{

int rolf_no;
char name [20] ;

float Percent;
l;
struct stud *Ptr;

ptr = (struct stud*) caftoc (2O,sizeof (struct stud)) ;

This allocates 20 blocks for structure student and each block will be having memory space

required by the object of structure i.e.26bytes. Program to demonstrate calloc function'

Dala.$tnr*-nre:Uelng:O

/* Program to accept n numbers and display addition of numbers */

#include<stdio. h>

#incfude(conio. h)
#include<af1oc. h)
void main ()

{

i-nt *num;

int n, i, s=0;
clrscr () ;
printf("\n Enter how many

scanf ("%d", &n) ;

numDers you want to enter :");

/* dynamic memory allocation function */
num= (int *) calloc (n, sizeof (int)) ;
for (i=0; i(n; i++)
i

pri"ntf ("Enter Number : "),.
scanf ("?d", num) ;

s=s+xnum;

num++; /* to move pointer to next location */

prlntf("\n Sum of given number
getch () ;

?d,', s);

Output

Enter how many numbers you want to enter: 5

EnterNumber:10

EnterNumber:20

EnterNumber: 30

Enter Number: 40

Enter Number: 50

Sum of given number: 150

tv. realloc(): In dynamic memory allocation, sometimes such situations can arise where either

we want to increase or decrease the memory space, allocated using malloc() or calloc()
function. So in such situations, previous allocation should be changed and memory should be

reallocated to fulfrll the current need of user. The memory can be reallocated using realloc()
function.

The prototype of thefunction is as follows:

void *ptr = reafloc(ptr, new-rec-size);

Where new-rec sizetells the new required size of memory in terms of bytes andptr is
pointer whiih points to the memory that has been previously allocated.

ln realloc() function, the main point to be noted is that, previous starting address of pointer

can be repiaced with the new addr"ss provided by the function as per availability. In other

words the old memory block (allocated by matloc() or calloc()) will be replaced with new

memory block(allocated by realloc())

But what about data that is stored at the old memory blocks? Interestingly, the contents of old

memory block will not be lost rather contents of old memory block will be preserved by

copying them into new memory block.

Consider the following examPle

ptr = ma]loc(10);

The pointer ptr will be allocated with the starting address of allocated memory block of l0
bytes.

ptr = realloc (pLr,20) ;

The pointer ptr can be allocated with new starting address of new memory block of 20 bytes

otheithan pievious address but at the same time contents of previous block will be kept as it is

after copying them into new block.

Program to demonstrate realloc function.

/* Program to accept n numbers and display them in reverse order */

#include<stdio ' h>
#inctude(conio . h)
#incl-ude(alloc . h>
void main(void)
{

int * num;
int n1 ,n2, i;
cl-rscr O ;
printf("\n Enter how manY
scanf ("8d", &n1) ;

numbers you want to enter :");

/* dynamic memory afl-ocation using calloc function
num= (int *) call-oc (n1 , si-zeof (int)) ;
for (i=o; i(n1; i++)

printf (" EnLer Number : ,') ;
scanf (f' 8d" , num) ;
num++; /* to move pointer to next location */

]
printf("How many extra number you want to enter:");
scanf (" 8d" , &n2) ;
num= (int *) reafloc (num, (n1+n2) *sizeof (int)) ;
f or (i=n1 ; i(nt+n2,'i++)
{

printf (" Enter Number: ") ;
scanf (tt ?d" , num) ;
num++; /" to move pointer to next l_ocation *,/

]
printf("You have accepted following number in reverse

order : ");
for (i=0 ; :-1n1,+n2,'i++)
{

num--; /* to move pointer to previous]ocation */
Printf ("\n 8d", *num) ;

]
getch O ;

]

Output

Enter how many numbers you want to enter: 3

EnterNumber:10
Enter Number:20
Enter Number: 30

How many extra numbers you want to errter:2

EnterNumber:40

Enter Number: 50
-
You have accepted following number in reverse order:

50
40
30
20
l0

free(): To use memory very efficiently, it should be released, if not required. The free(
frmction should be used to release the memory space allocated to pointer variable. The free(
firnction normallyreleases the memory space created using malloc() and calloc() function.

For exomple.' f ree (ptr)

)
)

ffi r'!ry B.tisio.rC,o
l

Where ptr is the pointer of which memory has to be released, that was allocated using

malloc() or calloc() function.

Program to demonstrate free function

/*Program to accept n numbers and display addition of number*/

#inc]ude(stdio. h>
#include(conlo . h)
#include(alloc . h)
void main (void)
i

int * num,'
int n, i, s=0;
clrscr () ;

printf("\n Enter how many numbers you want to enter :");
scanf ('r ?d" , &n) ;

/* dynamic memory alfocation function */
num= (int *) calloc (n. sizeof (int)) ;
for (i=o; i(n; i++)

{
printf (" Enter Number : ") ;

scanf ("%d", num) ;

s=s + *num;
num++; /* to move pointer to next location */

]
printf("\n Sum of given number = 8d ", s);
f ree (num) ;

f" free Lhe memory of variable num aflocated by cal]oc
function *,/

getch () ;
]

Output

Enter how many numbers you want to enter: 5

EnterNumber: l0
EnterNumber:20
Enter Number: 30

Enter Number: 40

Enter Number: 50

Sum of given number: 150

Note: The memory of l0 byte size allocated to pointer numwill be released after the execution of
free function.

W,,$':1,.,d

Algorithm Definition and Gharacteristics

Algorithm: It is a method of solving a problem. It is a sequence of instructions that acts on some
input data to produce some output in a finite number of steps.

An algorithm can be specified in many ways. For example, it can be
written down in English or any other natural language. However,
algorithms can be precisely specified using an appropriate
mathematical format like a programming language. Obviously the
behavior of an algorithm can be observed with the help of program
which can be defined as an implementation of an algorithm.

If we run a program, implementing an algorithm, on a particular
computer with a particular set of inputs, then behavior of the
program is according to the single instance related with set of inputs
and computer used.

Definitions

i. Algorithm is a set of rules or instructions that specify how to solve a particular problem or
task.

Algorithm is a step-by-step procedurefor accomplishing a task.

Algorithm is o list of instructions to solve a particular problem.

Properties

An algorithm must havefollowing properties:

i. Input: Algorithm must receive some input data.

ii. Ou@ut: Algorithm must produce at least one output as the result.

iii. Finiteness: No matter what is the input, the algorithm must terminate after a finite no. of
steps.

Definiteness: The steps to be performed in the algorithm must be clear and unambiguous.

Effectiveness: One must be able to perform the steps in the algorithm without applying any
intelligence.

ll.

iii.
oc',.2015-4M
What is algorithm?
Explain ite c*raracteristic$
in detail.

$ Be$ic,eonediit,andintr60t&tibd i ;l

4. Algorithm Analysis

In order to learn about the behavior of an algorithm, we can'analyze' it by studying the specification
of the algorithm and drawing conclusions about how the implementation of that algorithm can be

made general for any computer for any set of input.

The analysis of algorithms is the determination of the amount of resources (such as time and storage)
necessary to execute them.

Most algorithms are designed to work with inputs of arbitrary
length. Usually, the efficiency or running time of an algorithm is
stated as a function relating the input length to the number of steps

(time complexity) or storage locations (space complexity).

In theoretical analysis of algorithms it is common to estimate their
complexity in the asymptotic sense i.e. to estimate the complexity
function for arbitrarily large input.

An algorithm can be analyzed by determining

i. The running time of a program as a function of its inputs;

ii. The total or maximum memory space needed for program data;

iii. The total size ofthe program code;

iv. Whether the program correctly computes the desired result;

v. The complexity of the program--example, how easy is it to read, understand, modi$;
vi. The robustness of the program--example, how well does it deal with unexpected inputs?

But, primarily the analysis of algorithm is concerned with the running time and the memory space
needed to execute the program. The time and space requirements, referred as time and space
complexity of an algorithm, enable us to measure how efficient it is.

4.1 Time Gomplexity

Time complexity can be defined as running time of the program.
There are many factors that affect the running time of a program
which can be - the algorithm itself, the input data, and the computer
system used to run the program.

The time complexity cannot be measured by calculating the time
using the computer clock, because:

What is an algorithm?
How to measure its
performance?

Qct.2014 - 2M

ffiii".;"*mprexity?
Horry it is calculated?

Qct2O11 - 2M

Define time Complexity?

Data Structure Using C Basic Concept and Introduction ..

Program may also wait for VO or other resources.

While running a progftrm, a computer performs many other
computations.

So, we must use some abstract notation to calculate time complexity.
Generally the running time of an algorithm is proportional to the
number of steps it takes to execute the algorithm.

In such theoretical analysis of algorithms it is common to estimate their complexity in asymptotic
sense, i.e., running time can be defined as a function of the size of the input Oata wirictr is noled as
'Big-O Notation'.

4.2 Space Gomplexity

Space complexity can be defined as amount of computer memory required during the program
execution. The space complexity also cannot be exactly measured, but can be

-calculated
bv

considering data and its size.

So, space complexity can also be calculated exactly like time complexity i.e. using .Big-O Notation'
of the size of the items which require maximum storage in given data.

4.3 Asymptotic Notation

To choose the best algorithm we need to check efficiency of each
measured by computing time complexity of each algorithm.

algorithm. The efficiency can be

Asymptotic notation is a shorthand way to represent the time complexity.

Using asymptotic rotations we can give time complexity as 'fastest possible' 'shortest possible, or
'average time' various notations such as f), 0 and O used are called asymptotic notations.

Big-O Notation: Big-O notation is considered as a property of the algorithm. Big-O notation
is used as functions, which specifu the amount of resources

"onru*"d
by an algoiithm, when

the input to the algorithm is of size N. This function is usually denoted Ai OQV) wttere O(N) is
the amount of the resource, usually time or space of some specific

-operation
consumed.

Generally, the time required by an algorithm can be calculated as iime required per basic step.

For conditional, we count number of basic steps on the branch that is executed i.e. number of
statements either in if block or else block.

Apr.12,1O, Oct.10 - 2M
How to measure
performance of an
Algorithm?

AcL2015 - 2M
What is space
complexity? How is it
calculated?

Oct.l5,Apr.15 - 5M
Explain different types of
Asymptotic notations in
detail.

Para-:S!ft r,elqrE.Uging.S Basic Conceptand Introduciion ...

For aloop, we count number of basic steps in loop body i.e. number statements in looping

statement block times the number of iterations.

For ametho4 we count number of basic steps in method body.

Hence, efficiency of particular algorithm can be measured for a particular size of input (N),

but when N increases and it becomes larger, then same algorithm behaves differently. So Big-

O Notation defines order for growth.

I(hile calculating the Complexity with the Big-O Notation

l. Simpliff the basic steps and

2, Choose the highest term.

For example, consider the job offers from two companies. The first company offers a contract

that will double the salary every year. The second company offers you a contract that gives a

raise of Rs.1000/- per year.

Hence salary at the frst company increases at the rate of 2n

New salary: Salary t 2n (where n is total service years)

The highest term in this equation is 2n which can be denoted as O(2n) in Big-O notation.

While salary at the second company increases at arate of 1000n.

New salary: Salary + 1000n (where n is total service years)

The highest term in this equation is 1000n which can be denoted as O(n) in Big-O notation.

Hence from above example we can denote 'Big-O Notation' as a function of the size of the

input data as follows.

f(n): O(g(n))

Where f(n) represents the computing time of some algorithm O(g(n)) which takes time not

more than constant g(n).

o (1) Constant Excellent

O (log n) Logarithmic Excellent

o (n) Linear Good

O (n log n) Good

o (n') Quadratic OK

o (2^) Exponential Too slow

Big-O Exarnples , i

Let f(n) = 3n" + 6n -7
Claim f(n) = O(n2)

Let f(n) = 4n log n + 34n - 89

Claim f(n) = O(n log n)

Let f(n) = 20" 2n + 40

Claim f(n) = O(2n)

Let f(n) = 34

Claim f(n) = O(1)

n.

Iil.

Data Slructure usitig C Basic Concept and lntlpdudion ...

Omega Notation (A): f(n) : O(g(n)) iff there exists a positive integer na and a positive
number M such that I f(n) | >M I g(n) I, for all n) no.

Example:

a. l.3n+2:O(n)as 3n+ 2>4nforalln> 1.

Theta Notation (0): (n) : e(g(n)) iff there exist two positive constants c1 and c2 and a
positive integer ne such that,

cr I g(n) | < (n) < cz I g(n) | for all n > n0.

for all values of n, n) no. In other words, (n): o(g(n)) and (n): o(e(n)).

Example:

a. 3n+ 2 : 0(n) as 3n * 2> 3n for all n > 2. and

3n+2 <4nfor alln>2.

So c1 : 3, cz: 4 andnD :2.
Little oh Notation(o)z Definition: f{n): o(g(n)) (f of n is little oh of g ot'n) iff f(n):o(g(n))
and (n) + o(g(n)).

s< lim 4Q:o
n + o g(t'l)

Example:

For (n):l8n + Q, we have (n): O(n'?) but f(n) * O(g(n)). Hence f(n): o(n2).

lntroduction to Data Structure

Computer science can be defined as the study of data, its representation and transformation. Once
data is stored in the form of bits, it has to be accessed and manipulated many times. To do so, there
must be inbuilt mechanisms to access and store data.

Each programming language provides a set of built in data types, uthich allows data to be stored in a
meaningful format. The language also provides a set of operations to manipulate this data.

However, these data types are not enough, since present day programming problems are complex
and large. Thus, there is a need for a structured data type, which may be a combination or collection
of basic data types with a set of properties and legal operations that may be performed on it. This is
called the conceptual definition of the data type or the Abstract Data Type (ADT).

lv.

Dala'Stiiidilre,Usil!$c

The next stage is the Implementation stage where the ADT is implemented by hardware or software

methods.

Depending upon the application, the data type has to be chosen and carefirl thought has to be given

to how the data is to be stored so that there is efficient storage, convenient and faster retrieval and

manipulation. This is called time and space consideration.

5.{ Definition of Data Structure

Before we proceed, there ur" ,"ro.rul terms that we need to define. There is no standard definition
for these terms and they are often used interchangeably.

Data Object

Data object refers to a set of elements (D) which may be finite or infinite.

If the set is infinite, we have to devise some mechanisms to represent that set in memory since
available memory is limited.

Example:

A set of integer numbers is infinite

D: { 0, +1,!2...}
A set of alphabets is finite,

D: {.A',,8,,...,,2r}

Data Types

Data-type is a term used to describe the information type that can be processed by the computer and

which is supported by the programming language.

It is also defined as a term which refers to the kinds of data that variables may 'hold' in a

programming language.

Example

int, char , ffoat, etc .

Some languages also allow users to combine built-in data types.

Example

record in Pascal, structures and unions in C.

D,4q,.s,!l$tp

Data Structure

A data structure consists of data objects, their properties and the set of legal operations, which may
be applied to the elements of the data object.

Definition

A data structure is a set of domains D, a designated domain deD, a set of functions
F and a set of axioms A. The triple (D, F, A) denotes the data structure.

This definition is also called the AbstractData Type.

D - Denotes the data objects

F - Denotes the set of operations that can be carried out on the data objects.

A - Describes the properties and rules of the operations.

5.2 Types of Data Structures

The data structure can be divided into two basic types: Preliminary data structure and secondary data
stmctures.

A set of primitive elements which do not involve any other elements
as its subparts, is called as 'Primitive Data Structure'.

For example, int, char, float, double.

The non primitive data structures ate the data structure which are
basically derived from primitive data structures. They can be frmher
categoized into linear data structure and non linear data structures.

Fasb:Cgneept qod, lfitfodtdion,.;,

Primitive Data structures
Example: int, chart, float

Linear data structures
Example: lists,stack,queues

Non linear data structures
Example: trees,graphs

D..q!q, 8lntgrirc !15i19 p..,.",.

Linear data structures
sequence.

Basic Concept and Introduc.tion ...

are the data structures in which data is arranged in a list or in a straight

For example.' arrays, lists

Non linear data structures are the data structures in which data may be arranged in a hierarchical
manner.

6. Abstract Data Type (ADT)

In computer science, programming basically depends upon the data,

its representation and manipulation i.e. the method by which the bits

of data are accessed. Each programming language provides inbuilt
mechanism to store data. The data can be distinguished in different

data types like integer, floating or character type. Hence

programming provides meaningful format for data and also set of
operations to manipulate this data.

For example, when we declare a variable, say x, of type int, we know that x can represent an integer

in the range of l6-bits and we can perform operations on x such as addition, subtraction,

multiplication, and division. ln case of data type int we don't need to know how integers are

represented nor how the operations are implemented to be able to use them.

But, these basic data types are not useful in case of very large and complex programs, where we need

combination of basic data types having set of properties and operations that can be performed on it,

which can be called as dsta structure or abstract data type.

In general terms, an abstract data type can be considered as set of values and the operations
performed on it with some rules or properties on the data.

When we use abstract data type, our programs are divided {nto:

The Application

The part that uses the abstract datatype.

The Implementation

The part that implements the abstract datatype.

Oct.2009 - 2M

Define ADT (Abskact
Data Type).

ip ;$!f! {l Basic Goncept and Intrcduciion ...

uses the ADT

defines the ADT

implements the ADT

The Abstrqct Deilq Type is a type of a variable which specifies three sets:

1. A set ofvalues

2. A set of properties; and,

3. A set of operations.

By organizing our program this way i.e. by using abstract data types (its values and operations)

without referring as to how it will be implemented. Programs that use such data type only know the

implementation of the set of values but make use of the operations defined abstractly without
knowing their implementation.

7. lntroduction to Array

Any programming language provides different terms to develop a program like identifiers,
keywords, constants and data types. Similarly, C programming language has come up with some of
its unique terms to facilitate programmers,for example C programming language has provided two
categories of data types as primary data type and secondary data type where data type is referred to
as a type of data thqt con be held by variable or constant.

As most of the programming language has provided primary data types, C programming language
has provided following secondary data types.

Fq $trugtue U-si11gQ Basic Concept and Introduction ...

Secondary Constants / Data Type

i. Array constant: Used to store same type of data in continuous memory location under unique
name.

ii. Pointers: Pointer is a variable, which holds memory address of another variable.

iii. Structure: Used to storelhold different types of data and allocates memory of all variables
declared as structure data type.

iv. Union: Used to storelhold different type of data and allocates memory of maximum size
variable.

7.1 Types of Array

One-Dimensional Array

A one-dimensional array is used when it is necessary to keep a large number of items in memory and
reference all the items in a uniform manner. A list of items having one variable name, one subscript
is known as an One-dimensional arcay. In C single subscripted variable x1 corr be expressed as

x[0], x[l], x[2].......x[n] e.g., to represent a set of five numbers 11, 22,33,44,55 by an array
variable number, declare the variable number as follows:

int number[5]; and computer reserves five storage locations as shown below:

The values to the array elements can
be assigned as follows :

number[0]='l'1
numberl1]=22
number[2]=33
number[3]=44
number[4]=55

number[O]

number[1]

number[2]

number[3]

number[4]

number [0]

number[1]

Number[2]

number[3]

number[4]

Storage Representation of One Dimensional Array

Thus array number stores the values as shown below:

11

22

33

44

55

'o declare an array in C++, the programmer specifies the type of the elements and the number oflements required by an array a. folto*r,

F.ttud-q,!.e.,,u.si c

of array

.' type array-name larray size] ;

loat heighr IsO] ;

ares height to be an array which contain a maximum of 50 real numbers.nt group [10] ;

.W' 'E' ,L' 'L' ,D' ,o, 'N'l'E'l\0'
a[0] a[1] a[21 a[3] a[a] | a[5] a[6] a[71 al8l a[e]

t number 13l = {0,0, O} ;

Basb Concepl and Introductirorr ...

maximum of l0

character. Thus
array, we must

cannot be

[]. If you

I type specifies the type of element that will be contained in the array such as int, float or charanay-size specifies the maximum number of elements that can be stored inside the arrav.

lares group to be an array which contain a maximum of r0 integer numbers.
ar name[O]; declares name as a character array (string) variable that can hold a
aracters. Suppose we read a shing "WELL ooNig; into-an arrav name.

each character of the S1g in an array name is stored in memory as foilows.

/hen the compiler sees a character string, it terminates it with an additional nullement[9] holds the null character '\0' at the end. So when declaring character
lways allow an extra element space for the null terminator.

of Array
ou can initialize c++ 41ay elements either one by one or using a single statement as follows

type array-name larray_size] = {list of va_Iues} ;

alues in the list are separated by commas. The number of values between braces { }rger than the number of elements that we declare for the arruf b"t*een square bracketsnit the size of the array, anarray just big enough to hold the initialization is created.

uble bafance[] :{so. 45,65.85,70.42,45.60} ;ar namefl={'d', 'c., ,m.}; //character arraymilar manner.

//The size can be omitt.ed.
can be initialized in the

can assign the individual values in an array.
example, number [3] =eo;

Accessing ArraY Elements

Afterinitializinganaray,itselementsarecountedfromlefttoright.,EacTfnT.^:lT?=?ill
;ff'JT#:'#:?ftffi'#r,;;;;;r*tn" u"o constant positiin. rhe position or an item is alsr

.^^-l *omha

lllffi f;'ffi;:ffi;;J;;il"r,t" t"v, the most left, has an index of 0' rhe second membe
i'f ' -' L^^-^^:E^A^--

;iffi ffiffi ilrd". of l. Since
"u"t,

iiiy has a number of items which can be specified as r
-:- ^--^L^- ^f i-,lo-inn fn lnnafei6lj[ffiffiil11f,;; il;-inor* of n-t. Based on this svstem of indexing, to locate

I i : ,l^--:-- rL^ ^*^.r aor

member of an array, use its index in the group. An element is.accessed b1 inlexine the array namt

This is done by pru"ingitr" i"6"x of the
"t-t-"nt

within square brackets after the name of the array'

For example,

int rolfno=number [3] ;

The above statement will take 3'd element from the array and assign the value to rollno variable'

once you can locate a member of the alray, you can display its value using cout'

Here is an examPle Progrirm:

Create one dimensional alray and accesse each element of array separately'

#include(iostream. h)
int maino
f

doubte rollid tl = trr .22,22 ' 33,33 '44 '44 ' 55' 55 '66| ;

cout<("RolIid 1 : " ((rol-1id t0l ((endl;
cout(("RoIfid 2': " ((rotlid [1<<endl ;

cout<(,'Rofl_id 3 : r((ro1lid[2] <<endl;
cout<("Ro1Iid 4 : " ((rollid [3] (<endl ;

cout<("Ro11id 5 : " ((rol-l-id [4] ((endl ;

return 0;
l
create one dimensional array and accesse each element of anay by applying for loop'

#include(iostream. h)
int maino
{

double rollidtl = {tL.22, 22'33, 33'44'44'55'55'66t;
for (int i=o; i1=4; j++)
{

cout((,,RoI1id [" < <i < < "] = " ((roIlid Ii] < <endl ;

I

rltttttt 0;
I

Two-Dimenslonal ArraY

An array having two dimensions (sizes) is known as a Two-dimensional array' It is a collection

data elements of same data type arranged in rows and columns (that is' in two dimensions)' I

DalaStruclure Using C

Declaration of Two dimensional arrays
A two dimensional anay can be thought as a table which will have x
of columns.

Syntax: type array_name Irow-size] [co]-umn_sizel ;

Here type specifies the type of element that will be contained in the
array such as int, float or char and row-size specifies the number of
rows and column-size specifies the number of columns, array-name
is the name of table or, matrix.

Row 0

Row 1

Row2

number of rows and v number

A 2-dimensional array 'a' which contains three rows and four columns can be shown as below:

Column 0 Golumn 1 Column 2 Golumn 3

at0lt0l a[0][11 a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] al2l[11 alzllzl a12l[3]

Storage representation of two dimensional array
Thus, every element in array 'a' is identified by an element name of the form a[i ltj l, where 'a' is
the name of the arriiy, and i and j are the subscripts that uniquely identify each element in 'a'.
Example: int a[3] t3l ; //A matxix of 3-rows and 3-cofumns

lnitialization of Two-dimensional arrays
A two-dimensional array can be initialized along with declaration. For two-dimensional array
initialization, elements of each row are enclosed within curly braces and separated
by commas. All rows are enclosed within curly braces.

Syntax: int a t2l t3l = {0, O, 0, 1,I,1} ;

It initializes the elements of the first row to zero and second row to one.
int a l2l t3l ={ {0, o, o}, {t,r,i-}} ;

Example: A matrix of 3x3 is initialize by
inr a t3l i3l = {tt,22,33,44,55,66,7j,88,ee} ;

Gol-0 Col-l Col-2
.LJU

At0ltol Atoltll AtOlt2l <-- Row-O

At2ltol

Atlltol AI1il1l AIllt2l <-* Row-l

At2ltll AI2lI2l <- Row-2

Two-dimensional array are stored in memory

Basic Concept and lntrodudion ...

Oct.20l4* 2M
Give the formulae for
address calculation for
row and column major
representation?

11 22 33

44 55 66

77 88 99

An element in 2-dimensional array is accessed by using the subscripts, 1.€.' row index and column

index of the array.

For example,

int val=altl l,2l; //Statement wiLl- take 3rd element from the lsE row
of the arrav.

Multidimensional Arrays

As discussed in Single dimensional anay, the pair of [] used to mention size of array, is considered

as dimension of it. As such array is using only single pair of square braces it is called as single

dimensional array. Soo array having multiple pairs of square brackets are termed as Multidimensional

affay, or Multidimensional arays can be described as 'arrays of arrays'.

For example, a two-dimensional array can be declared as-

inr Mar [3] [s] ;

This can be represented as a two-dimensional table as follows

Ma'{ i
Mat represents a two-dimensional array of 15 elements of type int, arranged in 3 rows and 5 columns

as shown in above. Hence declaration syntax of two dimentional array is -

Data_type Array_name [Row] [Co1] ;

Where, Data_type represent type of data that can be stored in array named 'Array_name', which is

any valid identifier name and Row and Col are the integer values, which represents total number of
rows and columns into which the elements can be alranged logically.

/* Program to explain Matrix Multiplication using two dimensional array */

#incfude(stdio. h>
#incl-ude(conio. h>
void main ()

{
int i, j , mata [3] [3] ,matb t3l t3l ;
void matmul(int mata[3] [3], int matbt3l [3]);
printf("Enter e]ements of first 3 x 3 matrix \n") ;
for (i=o; i<3;i++1

W
t
for (j =o; j <3; j ++)
{

scanf ("%d", &mata til tj I) ;
l

]
prinLf ("Enter elements
for (i=0; i<3;i_++)

{
tor(j=0;j<3;j++)
{

scanf ('2d", &matbtil tjl);

]
matmuf (mata,matb)
getchO;
]

ofsecond3X3 matrix \n,,),.

void matmul (int first I t] , int
{

int matmul t3l [3],i, j,k;
for (i=0; i<3;i++;
t
for (j =0; j <3; j ++)

{
matmuf Iil tjl =o;

for (k=0;k(3;k++)
t

matmu] Iil tj I = marmut [i]
]

/* arxay as an argument */

second [] [])

[j] +f irst iil tkl *second lkl tj I ;

]
printf("Multiplication of entered 3 x 3for (i=0; i<3; i++;

{
for (j=0;j<3;j++)
{

prinrf ("gd\r"marmul til tj I) ;
]

]
printf (,,\n,,) ;

]

Output

Enter elements of first 3 x 3 matrix
34
2l
32

matr ix \n,,)

na!{.s!ruaft l-Fc.:rr.s{gi,g
Basic ConcePt and Infioduction .'.

Enter elements of second 3 x 3 matrix

325
621
63s
Multiplication of entered 3 x 3 matrix

48 22 33

30 15 27

45 22 38

T.2UseofArrayasanArgumenttotheFunction

In some cases we may need to pass an ruray to a function as an argument' In C programming it is not

possible to pass a complete block of memory of an array, as a parameter to a function' with pass by

value, but we can Pass its address.

In order to pass array as a parameter, we have to declare the function by speciffing-the element type

of the affay, name of array and a pair of empty brackets [] in its parameters' For example' the

following function:

void sum(int arr il)

Where. sum is a function name of void data type, which accepts affay as a parameter of type

int having name array name arr.

The syntax can be as follows:
reLurn-l-ype function-name (data-type name [])

Where, return-type is a valid type (like int, float.'.), function-name \s a valid identifier and

data-type is also a valid data type of array (like int, float...), na-Jis any affay name i'e' any valid

ident-ifier, squafe brackets[]; specifies the array as a parameter.

/* Program to accept 5 numbers using array and display it along with its sum'*/

#include(stdio. h)
int sum(int arr [])

i
int I, s=0;
for(I=O;I(5;f++)
{

s+=arr lIl;
1

W
TA|-rrTn Q.

]
void maino
{

int I, m, No[5];
print,f ("Enter 5 Numbers \n");
for (I=0;I(5;I++)
{

scanf ("Zd', aNo If]) ;
]
printf("Entered Numbers are \n");
for (r=o;r(5;r++)
{

printf ("8d\n', No II]
l
m=sum(No); /* also we
printf ("Sum of 'entered
printf ("2d", m) ;
gercho;

);

can pass array
numbers are ");

as m=sum(euo[0]); */

102 110

5 numbers

numbers are

Sum of entered numbers arc23

The parameter (int arrl]) accepts an afiay of any length and whose elements are of type int. The
elements of an array can be accessed according to index using the for loop.

't08106104100

No[0] No[1] No[2] No[3] No[4]

2 5 6 7 3

B{ @ Basic.oonceDl and.ln ,,

I7.3 Array - As an Abstract Data Type

The Abstract Data Type is a type of a variable which specifies three sets:

i. A set of values

ii. A set ofproperties; and,

iii. A set of operations.

Generally, abstract data type is a collection of elements having some properties on it, and operations
to manipulate the data according to those properties.

The properties are related with the storage and retrieval of elements from the collection at specific
position. Hence, as array being a collection of elements of same data type, it can also be considered
as Abstract Data Type.

Whenever collection of elements is considered, the operations are related with storing and retrieving
the elements into it and properties are related with the rule for the position at which either we can
store the element or retrieve the element. Hence array, collection of elements having store and
retrieval as its operations, is a strong competitor for being an Abstract Data Type. We can rehieve or
store element at any position in an array without any specific rule, it is not having any set of
properties to follow.

Hence, array as an Abstract Data Type (ADT) can be defined as
follows:

Set of Values for Array

A set of values for afiay are array index and value at specified index.
i.e. (index, value), where for each value of an afiay has its own
index.

Set of Operations/ Functions for Array

i. Item Retrieve (Arr, i): Where, Retrieve is a function name having retum type item i.e. data
type of anay. if i' is the valid index of an element in an array 'Arr', which should be in the
range from 0 to Array size -1, then this function retums the value of element associated with
index 'i' in array 'Arr' else returns enor as invalid index.

ii. Store (Arr, i, x): Where, Store is a function name. if i' is the valid index of an element in an
affay 'Arr' , which should be in the range from 0 to Array size -1, at which the value 'x' has to
be store else returns error as invalid index.

/* Program to accept l0 numbers from user and sort them using Pointer */
#lnclude(stdio. h>
#incfude <conio . h)
void main ()
i

What is ADT for an
Anay?
Apr.2011. 2M

lBT"
Array. Give its

Data Structure Using C

int i,j;
int no [t0] ;

for (i--0;i<10;i++)
{
printf ("Enter value of no [?d] \t", i) ;

scanf ("%d", ano Ii]) ;
]
printf ("Values Before Sortintg \n',) ;for (i=o;i<10;i++;
{

Printf ("?d- - - ", no [i]) ;
]
a=no;
for (i=o; i<10; i++;
{
for (j =i; j <10; j ++)

{
if (* (no+i;1* (no+j)')
{

swap (no+i, no+j) ;
]

]
i
pr j-ntf ("\n Af ter Sorting \n,,) ;for (i=O;i(10;i++)
t

Prrntf ("%d- - - ",no [i]) ;
i
getch () ;
]
swap(lnt *b, int *c)
{

int temp;
temP=*b;
*h=*c.
* c = temp;

]
]

Output

Enter Value of no[O] 5

Enter Value of no[] 3

Enter Value of no[2] 12

Enter Value of no[3] 33

Enter Value of no[4] I
Enter Value of no[5] 13

Enter Value of no[6] 45

Enter Value of no[7] 36

Basic Concept and Introduciion ...

tritt?.$t

Enter Value of no[8] 68

Enter Value of no[9] 34

Values Before Sorting

s - - -3 - --12---3 3 --- I --- I 3 ---45 - - -3 6---68---34---

After Sorting

I ---3 ---5 --- I 2---13 ---33 ---3 4---3 6-- -45 ---68---

7.4 Applications of ArraY

Array can be used in numerous applications like

i. Storing numeric data lists

ii. Storing character strings

iii. Manipulating matrix using two-dimensional type.

iv. Implementing different data structures like stack, queue etc.

v. Representing lists like polynomials.

8. Polynomial

A polynomial can be represented in an array or in a linked list by simply storing the coefficient and

exponent of each term. However, for any polynomial operation, such as addition or multiplication of
polynomials is easier to deal.

8.{ Polynomial Representation using Array

A polynomial is a expression, derived in terms of sum of elements

which can be represented as CX", where C is a cofficient, X is a

variable and e is a exponent.

For example.: xa+10x3+3x2+7x+ |

Data'Structure Using C Basic Corrcept and Introduction . ..

above example the polynomial is represented as a sum of
elements where

I't element: Xa having coefficient I and exponent 4 for variable X

2nd element: l0X3 having coefftcient l0 and exponent 3 for variable X

3'd element: 3X2 having coeffrcient 3 and exponent 2 for variable X

4th element: 7X having coefficient 7 and exponent I for variable X

5th element: I having coefficient 1 and exponent 0 for variable X

From programming point of view, representation of polynomial is

different operations on it like:

i. Addition

ii. Subtraction

iii. Multiplication

important in case of carrying

The polynomial can be stored and represented using array.

The array can have the size depending upon highest degree/exponent ofpolynomial. So to represent

polynomial in above example, the array can be declared with size 5 i.e. highest exponent + l.

Hence affay can be declared as

int poly [5] ;

Hence, elements in an array will be having indices 0 to 4 which can be used to represent exponents

of polynomial and value stored at these indices will represent the coefficients of respective term

having exponent equal to the index.

For example: Xo+l0x'+3x2+7x+ |

It can be represented in an array

int poly= lI,'t ,3, 10,1i

Diagrammatically it is shown as below

Poly 1 7 3 10 1

* xo 7" xI 3" xt 10* x" 1*

Hence, each index stores coefficient of term having exponent exactly equal to an index i.e.

polynomial can be stored in reverse order according to their exponents in to an array.

OcL2011 - 2M
What are the different
r,tays to represent
polynomial?

Ea1a.:,$tJ*rq,t fi=r1

8.2 Add ition of Polynomials Using Array

When two polynomials are to be added, the resultant polynomial can be generated by adding the
coefficients from both polynomials having same exponent.

For example

A:5X3+ 3xz+2x+ |
B:4X2+ X + 9

Hence C: 5Xr+ 7X2+ 3X + l0

To add two polynomials using array, the following steps can be followed.

i. Store both given polynomials into an array inreverse order of their exponents.

ii. Declare array for resultant polynomial.

iii. Consider the values at each and every index from both arrays

iv. Add those values and store the result at corresponding index, at which the values are
considered, in resultant array.

v. Repeat above step for all the indices.

vi. Display resultant array.

For example

A:5Xr+ 3x2+2x+ |

1 2 3 5

1* X" 2* X', 3* X' 5*

B:4X2+X+9

A

B

C: A+B:J{3+7X2+3X

9 1 4 0

1* X" 1* X' 4* X. 0"

+10

0

1 +9=1 0 2+1=3 4+3=7 5+0=5
10" x" 3* x' 7* X' 5*

c

P.gta$,t ,,.1J Basic Concept ard tntroduction ..,

Structure

Structure is another secondary data type. Strucfure is user defined data type, which is used to store
dissimilar / heterogeneous data type under unique name. Keyword 'struct' is used to declare
structure data type. ln structure all elements are public by default and referred as 'member' which
must be enclosed within { } and the name given to structure is called as 'structure tag'.

9.{

struct
{

Syntax to define Structure

structure name

efement
efement

structure
structure

1'

structure element:
] structure_variabfe
Example
struct student
{

char nama[1nlv4r*! ++srrrv LJvJ ,

char nnrrrca f ql
v' tJ J I

].nt age;
int year;

This defines student as a new user defined data type. The variables of type student can be declared as
follows.

struct student s1;

Note: declaring variables of type student is similar to declaring them as int or float. Variable can be
declared at the end of definition of structure as follows:
struct student
{

char name [30] ;
. char course [5] ;

i nt- ana.

i ni- rraar .+rrU J vu! ,
a-'l .

variable name is sl, it has members called name, course, age and year.

list;

pata:$tf.gBttre $ing,.q Ba,lii oo, ,!n1 ,'i

9.2 Accessing Members of a Structure

Each member of a structure can be used as a normal variable and can be accessed using structure

variable name, dot operator and structure member name respectively.

This is as shown below:

s1.name

Here the dot is an operator which selects a member'name' from a structure variable name osl'.

Similarly, we can also declare pointer variables of type student as:

struct student *s2i

To access a member of structure using a pointer variable of structure, it has its own operator arrow

(+) which can be used as follows.

s2 -) name; or (*s2) .name;

9.3 Structures as Function Arguments

A structure can be passed as a firnction argument just like any other variable using both pass b1

value and pass by reference methods.

When we want to modifu the value of members of the structure to be passed as argument, we musl

pass a pointer to that structure. This is just like passing a pointer to an int type argument whose valut

we want to change.

ln order to accept structure as parameters the only thing that we have to do when declaring th<

function is to specifu in its parameters the element type of the structure with pointer to it
For example, the following function:

void fun(struct student *s1)

where,fun is a function name which accepts pointer s1 as a parameter of type structure student

The syntax can be as follows,

rot-rrrn f\/ne frrnction name(struct struct name *variable name)tULU!II UJYV

Where, reLurn_type is any valid data type (like int, float...), function-name is a

identifier, struct is a keyword to mention structure is passed as a parameter, struct-name
valid identifier, * var iabf e-name specifies the pointer to structure'

When a structure is passed as an argument, each member of the structure is copied. This can prove

expensive where structures are large or functions are called frequently. Passing and working with
pointers to large structures may be more efficient in such cases.

/* Program to calculate SI using structure and Pointer.*/
#incfude(stdio.h)
struct interest
{

int p,n,r;
].
void maino
{
struct interest sl,'
f foat cal-c(struct interest);
€l^-ts ^.i-^i^f-,rf uqu DflrrPrrrLr,
printf("EnLer the values of P,N &R \n")
scanf ("%d%d%d", &si.p, &si.n, &si.r);
simpintr=cafc (si) ;
nrinf f /trqimnlo intereSt iS B.2f FOr amopnt}Jr rrru! \ urilyrv !

9Ar cimninl-r qi n qi n qi r) .
erlLvfrfur, eL'yt e+rLn

getch () ;
]
ffoat calc (struct interest si1)
{

return (sil.p*sit.n*si1 .x) /IOO;
]

Output

Enter the values of P, N and R

1000 l 13

Simple interest is 130.00 for amount 1000. For year 1 By the rate

g-4 Self-Referential Structures

Self-Referential structure is a structure having one or more of its member as a pointer to structure
itself. Simply, self-referential structure is a structure of which members can refer the same structure.

For example
struct list
{
char data;
struct list *l-ink;
J I];

9rl l-nr \ra^ra 9d P,rz l-ha rei-o
Jvstv

l3

Apr.l5,l2, 10 - 2M
Oct.{O, Og - 2M
What is Self-referential
Structure?

B.afa $tfi 'tg,4ilrei.Usif,Er F Basic Concefl and Introduction ,,.

ln above example structure list contains one member struct list *link i.e. pointer variable of same
structure. Hence strucfure list can be called as self referential structure.

Difference between Array and Structure

Solved Examples

Array Structure,
1. An array is a collection of related data

elements of same tvpe.
Structure can have elements of different types.

2. An array is a derived data tvpe. A structure is a proqrammer-defined data tvpe.
3. Any array behaves like a buifi-in data

types. All we have to do is to declare an
arrav variable and use it.

But in the case of structure, first we have to
design and declare a data structure before the
variable of that type are declared and used.

4. All elements of array have the same type
i.e. homoqeneous tvpe.

All elements of structure may be
heteroqeneous.

5. Efements of array are referred to by its
position.

Elements of a structure are its unique name.

6. For example.'To access 3'o elements of
array'Number'& store value in variable
'A'we can write.
A=Number [2] ;

For example: To access value of structure
variable'book' having structure element name
as'pages'we can write.
no=book. paqes;

7. Syntax
dala_type array_name Isi ze]

Syntax
struct structure name
t

structure element 1,.

::1:::Yl:.3lement 2;

] structure variable fist;
-F,rr^tsr.-^ ^i^-^-sLr uL Lurc e-Lernetrt n;

8. For example: int no [1o] For example
struct book
{

char name [25]
fl na1- nri co'

l bt,bz;

1. Write a oCo Program for evaluation of polynomial.

Solution
A 'C'programfor evaluation of polynomial is as,
#include<stdio.h>
#include(conio. h)
#include<stdlib. h>
#define MAXSTZE 10
void maln ()

i
inr a IMAXS rzEl ;

int i , N, power ;

Bata:sfl+qre,itu,i,!E:q Basic Concept and lntroduciion ,,.

ffoat x, polySum;
cf rscr O;

printf ("Enter Ehe order
scanf ("?d", &N);
pr intf ("Enter the vafue
scanf ("%f ", &x) ;

/*Read the coefficients into an array*/
printf ("Enter 8d coefficients\n", N+1) ;
for (i=O;i <= N;i++)
{

scanf("%d".taIi]);
]
polySum = alOl;
for (i=r;i<= N;i++)
{

polySum: polySum * x + aIi];
l
Power = N;

/*power--;*/
printf (',Given polynomlal is: \n") ;
for(i=0;i<= N;i++)
i

if(power < 0)
t

break;
l
/ * pr inting proper polynomial funct ion* /
if (aiil > o)

Print[(" + ");
else if (atil < 0)

PrLnLf (" - ");
else

Printf (" ");
printf ("?dx^?d ",abs(aiil),power_ _) ;

j
printf ("\nSum of the polynomial = Z6.2f \n,,,polySum) ;

Write a program to accept roll
students from the user
(Use structure array).

Solation

The following program is used to accept the data of N students and print all data on the screen.
#include<stdio.h>
inc]ude < conio . h,
truct stud /*structure definition of represenLing student information */

of the polynomial\n,')

of x\n,');

no, name and marks for N
and print the data.

W
lnt rof l-no;
char name [20] ;

int subl-_marks, sub2-
float avg;

1

void maino
{

struct stud s [20] ;

int n, i;
cfrscr O ;
print,f("\nEnter the number of students");
scanf(il?d",&n); /* accept the number of students */

for(i=0;i(n;i++) f* aecept all data from n number of student's */

f nri nf f ("\nFlnter RolI No") ;t yr

scanf (t' %d" , as Ii] . roll-no) ;

printf ("\nEnter Name") ;

scanf ("%s", cs Ii] .name) ;

nz-in|. f 1rr\nFntor Marks of 5 Subjectsrr);
:"#;i;r jiiii*itd', , &s Ii] . subl-marks, as til . sub2-marks, &s Ii] . sub3-marks,
as til . sub4-marks, &s Ii] . subS-marks)

/* cafculate the percentage marks of each student */
s til .avg= (s til . sutt_marksis til . sub2-marks+s Ii] . sub3-marks+s Ii] ' sub4-ma

rks+s Ii] .subS_marks) /5;
\
/* rtrinf l-.he roll no, name, marks of al-l-
/vL

st,udents */
for (i=o;i(n;i++)

s subjects and Percentage of all

I printf ("\n\t\t\c***MARHKSHEET***\n") i
printf ("\t\tNAME : - ?s", s Ii] .name) ;

printf("\t\tRoLL No : - %d't,sIi] .rollno);
pr inrf (,,\r\n\n\ tsubl_marks = %d\n\n\tsub2-marks:?d\n\n\ tsub3rnarks= 8d\n\n\

tsub4 marks=?d\il\n\tsubS_marks=?d", " Ii]
. subl-marks, s [i] . sub2-marks,

s til . sub3 marks, s til . sub4-marks, s Ii] ' sub5rnarks) ;

printf ("\n\n\t\TPERCENTAGE : - ?f", s Ii] .avg) ;

l

nar-ah / \
Yv vvrr \ / ,

marks, sub3 marks, sub4-marks, sub5-marks;

/* main function */

/* arrays of structure decfaration */

Wit. a 6C'program for evaluation of a given polynomial'3. Write a'C'
(e.g.2x3+x+3)

Data Structure Using C

Solution

#include(sLdio. tr)
#lnclude<conio. tr>
#define MAX 20
l.rznodaf ci-Yrr-i-

{
float coef;
int exp;

] poly;
void readpoly(po]y p[], int n) ;
void dispoly(poly p[], int n);
void main ()

i
PolY alMAXl , b [],IAX];
int m, n;
printf("\n Enter the number of
scanf ("2d", &m) ;
readpoly (a, m) ;
printf ("\n Enter the number of
scanf ("eod", &n) ;
readpoly (b, n) ;
pr int f (" \n The Resuf t,,) ;
dlspoly (a, n) ;

]
void readpoly(poly p[l, int n)
{

int i;
printf ("\n Enter the terms
for (i=0;i(n;i++)
{

printf("\n Ceof and power
scanf ('e"f %d", &p[i].coef ,

]
]
void dispoly (poly p [] , inr n)
{

int i;

H. ,$O.neeiit,ag.q{r.i

m) ;

n) ;

in descending order");

Zd" , i+1);
P iil .exP) ;

for (i=0;i(n;i++)
printf ("%d.2fx"%d+',, p til coef, p til . exp) ;

4. Write a 6C'program for addition of two polynomials.

Solution
#include(stdio.
#lnclude(conio.
truct term

h>

h>

/ / structure to define each term in polynomial_

W
ant exp;
int coeff;

l.

struct polynomial
t

struct term a [10] ;

int n;
li

void maino
{

strucL polynomial p, pl-, p3 ;

int i;
clrscr O ,'

nr i nf.f ("\nEnf.er no of terms of
scanf ("8dt',&p.n) ;

for(i=o;i<p.n;i++)
{

nrinIf {t'\ntrn|er the Sdth term\ \rr!t!vvt

coef f icient: ", i+l-) ;

scanf ("8d8d", &p. a Ii] . exp, &p. a

/* structure of polynomial represent number of Lerms.*/

first pol-ynomiaf : ");

in order exponent and

lil . coeff) ;

]
printf ("\nFirst Polynomial is: ") ;

for (i=0;i<p.n;i++)
{

printf (" (?dx) ^8d +",p.d Ii] .coeff,p.a lil .exP) ;

]
printf("\n\nEnter the no of terms of second polynomial: ");
scanf ('r 8d" , &p1 , n) ;

for (i=0,'i<p1 .n;i++)
{

printf("\nEnter the ?dth term in order exponent and coefficient: ",i+1);
scanf ('rBdBd",&p1 .atil .exp,&p1 .atil .coeff);

]
printf ("\nSecond Polynomial is: ") ;
for (i=0; i <p1 . D; i++)

{

printf (" (8dx) ^8d +",p1.aIi] .coef f ,p1.alil .exp);
]
printf ("\n\nAddition is: \n") ;

if (p.n)p1 . n)
p3.n=p.n;

tiw
el-se if (p. n<pr . n)
p3.n=p1 .n,.
efse
p3.n=p1 .n,.
for (i=0,. i <p3 . n,' i++)
t

1f (p.a Ii] .exp==p1.a Ii] .exp)
t

p3.a [i] .exp=p.a Ii] .exp;
p3.a IiJ .coeff=p.a Ii] .coeff+p1.a til .coeff;

]
1f (p:.tr==p1.n && pl.atiJ.exp>p.alil .exp)
{

p3.a IiJ .exp=p1.a Ii] .exp;
p3.a Iii .coeff=p1.a ti] .coeff ;

]
if (p3.n==p.n && p.atiJ .exp>p1.a[i] .exp)(
t

p3.a [i] .exp=p.a [i] .exp;
p3.a IiJ .coeff=p.a ti] .coeff ;

]
]

for(i:0;i<p3.n;i++)
{

printf(" (8dx) "8d
]
getchO;

+",p3.a [i] .coeff,p3.a [i] .exp) ;

€ffPU Ouesrions
l.

2.

3.

4.

5.

6.

7.

8.

What is use of (&) address operator and dereferencing (*)
operator?

What is space complexity? How is it calcirlated?
What is difference between structure and polynomial?
What is self referential strucfure?

What is pointer? What are the operations can be performed on
the pointer?

What are the different types of data structures?

What is time complexity? How it is calculated?
Give the formulae for address calculation for row and column
major representation?

How to calculate count of Best, Worst and Average case?

IOct.15.Aor.15 - 2Ml

lOct.2015 - 2Ml

IOct.15.Aor.15 - 2Ml

1Oct2O15 - 2Ml

lOct2015- 2Ml

lAor.15.Oct14- 2Ml

toc',.2014-2Ml

IOct2014- 2Ml

lOct2014- 2Ml

Hfi,qg!.q',ry.;g

IOct.2012 - 2Ml

lOct2012- 2Ml

IApr.12.10,Oct10 - 2Ml

IApr.l2.1 0 Oct.l 0.09-2Ml

IOct.2011 - 2Ml

lOcL2011 - 2Ml

lOct.2011 - 2Ml

lOct.2011 - 2Ml

1A,or.2011-.2M1

lAPr.2011 - 2Ml

tOct.l0.APr.10 - 2Ml

lOct.2009 - 2Ml

lOct.2009 - 2Ml

tOct.2015 - 4Ml

lOct.l5.APr.15 - 4Ml

1Aor.2015 - 4Ml

1Aor.15.12 - 4Ml

IApr.l5. Oct.14 - 4Ml

1Oct.2014 - 4Ml

lOct.2012- 4Ml

lOct.2012- 4Ml

lOct.2o11- 4Ml

fOct.l0. Apr.10 - 4Ml

I

Basie:Co rang,$t ;

10. What is Algorithm? State its properties'

11. What is ADT for an ArraY?

12. How to measure performance of an Algorithm?

13. What is Self-referential Structure?

14. Define time ComPlexitY?

15. Define Array. Give its ADT.

16. What are the different ways to represent polynomial?

17. What is the difference between Malloc and Calloc?

18. Define Algorithm.

19. What is primitive data structure?

20. Explain in brief the functions of Dynamic Memory Allocation.

21. Define ADT (Abstract Data Type)'

22. What is Atray?

l.
2.

J.

4.

5.

6.

7.

8.

9.

10.

What is algorithm? Explain its characteristics in detail'

Explain different types of Asymptotic notations in detail'

What is an algorithm? How to measure its performance?

Write a "C" program for addition of two polynomials'

Explain different types of dynamic memory allocation

functions.

Write a'C' Program for evaluation of polynomial'

Explain Dynamic Memory Allocation Functions with their

Syntax.

Write a'C' Program for evaluation of polynomial'

Write a program to accept roll no, name and marks for N
students fto- ttt. user and print the data. (Use structure ana/'

Write a 'C' program for evaluation of a given polynomial'
(e.g.2x'+x+3).

o"
ursl0ll

srnncHrrc re;
$onrrilc

TTCHIUIoUES

Introduction

Searching is a technique to locate a position of a particular item in a list. In real applications, the list
is implemented as an array and the goal is to find a particular element. An element can be searched
by matching the list with element.

There are two types of searching technique linear search and binary search.

2. Linear Search

Linear Search is the simplest and most logical method used for
searching. It can be applied for sequential storage structures like
files, arrays or linked lists.

Linear Search is more efficient for the applications when data is
unsorted.

DataStructure Usrng C Searching and Sorting Techniques

It is usually very simple to implement, and is practical when the list has only a few elements, or

when performing a single search in an unordered list.

When many values have to be searched in the same list, it often pays to pre-process the list in order

to use a faster method.

As this method does not require additional memory so insertion and deletion can be easily done in
method. This method will more efficient for the applications which are used on small to medium

sized lists.

In this technique procedure used is to check the first item, then the second item, and so on until you

find the required element or reach the end of the list. As the linear path is followed to check the

element i.e. from first element to the last one in the list, this technique is called as linear
(or sequential) search.

Main steps of Linear Search

Assume an array called list is having positive integers. The task is to search for the location of the

number that is the value of a variable target. Hence to search for the location of target in list, linear

search will work like:

l. location : 0;

2. while ((location is less than size of list)

if(element at location is not a target))

' increment the value of location

else

location: position of target in original list

return location as the result

end while

/* Linear Search Program */

#inc]ude<stdlo. h>

#incfude <conio . h)
void maino
t

int list t5l = {a0,20,30,40,50} , i, target;
clrscr () ;
nr i nf f f rtEnf er element Lo seaf ch: - ") ;
scanf ("?dt', &target) ;

for (i=o;i(5;i++)
{

Data' guuctlre.Using C Searching and Sorting Techniques

if (1 ist Ii] -=target)

{

prinbf ("El ement f ound at position: %d", i l I) ,'

br eak;

]

1I (1==5)

printf ("El-ement not f ound") ;
getch () ;

]

A loop is rotated to search the target in the array. The target can be anywhere in the array or perhaps

not in it at all. The program must be able to exit the search loop as soon the target is located,
otherwise to search all the items in the array, if necessary.

The initial value of the control variable i is 0 and increments by I each time through the loop, since

valid index values range from 0 to the number of items minus one. The loop repeats as long as i is
less than the number of items. The expression 1i s t t i I target tests whether the value of the
target variable is the same as that of the current /rsr element. This condition allows the loop to
continue if the current element of the list is nol the same as the value of target. At loop exit, either
target has been found, (list til target), or the entire array has been checked without
finding it, and i == size of array. In the former case,location is displayed as the value of i,
while in the latter the message 'element not found'will be displayed.

The following table shows an example of the operation of the linear search algorithm. The first row
of the table is the array indices and second row is the data stored at the indexed location and
remaining rows indicates the index values used for location (L), at each iteration of the algorithm.

If the target value is 52, its location is found on the 3'd iteration.

Efficiency of Linear Search

The efficiency of algorithm depends upon the number of main steps require to finish. But, the exact
number of steps depends on the input data. For the linear search algorithm, the number of steps

Index 0, { 2 3 4 5 6 7 I I t0 71 12 13 t4 t5
Data 68 34 52 32 27 47 46 4',\ 49 52 78 23 71 74 77 55

l"titeration L

2noiteration L

3'diteration L

g4b-,str.{ e.lJ.s.ing $earching and Sorting Techniques

depends on whether the target is present in the list, if it is present, where is the location of it in the

list, as well as on the length of the list.

For search algorithms, the main steps are the comparisons of list
values with the target value. The number of comparisons required to
locate target in the list, represents the best case, the worst case, and
the average case as shown in the following table. For each case, the
number of steps is expressed in terms of n, which represents the
number of items in the list.

Case
Number of Gomparisons

(for n = 10O)

Best Case
(fewest comoarisons)

1

(taroet is first item)
o(1)

Worst Case
(most comparisons)

100
(tarqet is last item)

o(n)

Average Case
(average number of

comoarisons)

50
(target is middle item)

o(nt2)

The best case analysis doesn't tell us much. If the fnst element checked happens to be the target, any

algorithm will take only one comparison. The worst and average case analyses give a better

indication of algorithm efficiency.

Notice that if the list grows in size, the number of comparisons required finding a target item in both

worst and average cases grows linearly. In general, for a list of length n, the worst case is n
comparisons. Hence the technique is called lineor search because its complexity/efficiency can be

expressed as a linear function.

3. Binary Search

This technique is more effrcient as the list is sorted,/or example, in ascending order. A sorted list can be

used to narrow the search as explained below:

The technique of binary search is to check the middle (approximately) item in the list. If it is not the
target and the target is smaller than the middle item, the target must be in the first half of the list.
If the target is larger than the middle item, the target must be in the last half of the list. Thus, one

unsuccessful comparison reduces the number of items to be checked by half.

Once, the required half is identified, the search continues by checking the middle item in the

particular half of the list. If it's not the target, the search narrows to the half of the remaining part

Apr-201# 2M
How to calculate count of
Best, Worst and Averagc
;;.;'?

Pata Sructure.u inge Searching and Sorting Techniques

the list. This splitting process continues until the target is located or the remaining list consists of
only one item. If that item is not the target, then it's riot in the list.

The main steps of the binary seqrch algorithm can bewritten as:

i. Location: -1;
ii. While ((more than one item in list) and (haven't yet found target))

a. Look at the middle item

b. If (middle item is target)

have found target

else

c. If (target < middle item)

list : first half of list

d. else (target > middle item)

list: last half of list

end while

If(have found target)

location : position of target in original list

Return location as the result

Iterative lmplementation of Binary Search

/* Binary Search Program iterative */

#incfude<stdio. h)
#incfude<conio. h)
void maino
t

int list t5l ={1-o,20,30, 40,s0}, i, target;
int first,middle, last;
first:0;last=4;
clrscr O ;
printf ("Enter e-Lement to search: ") ;

scanf ("Zd", Ae) ;

whife (first<=1ast)
{

middle= (f irst+1asL) / 2 ;

if (rarger==lisr [middle])

Eatal$tflJ$!{r€,,Ir., Searching aftd Sortlng Techniques

orint-f ("Elemenf forrnd ef nnqi f inn.9.lr middla+i'yrrrru!\ uful.LurrL
- -);

br eak;

if (target<fist fmiddlel)

l : ct- =mi dd l o - r

if (target> l-ist lmiddle])

f i rcf =mi ddl a+'1 .

if (first>lasr)
printf ("Element not found,') ;

getch () ;

]

Two integer variables,y'rst and last,record the first and last index values for the part of the array
remaining to be searched. The integer variable, middle, stores the middle position between/,x/ and
last. Each time through the loop, the target is compared to the middle item. If the target is less than
the middle item, the next iteration searches the lower half of the current part of the array by setting
Iast to the position just before middle. Thus, the next part to search is from positions first to
middle -1.|f target is greater than the middle item, the next iteration searches the upper half of the
current part of the anay by settingfirst to the position just after middle. Thus the next part to search
is from middle + I to last.

The search ends when the target item is found or the values of first and, last cross over, so that
last<first, indicating that there are no array items left to check.

Recursive lmplementation of Binary Search

This technique can also be implemented using recursivefunction as follows:

/* Binary Search Program recursive */

inc lude (s tdio . h>

#inc]ude(conio. h>

vold main ()

t
int arr t5l = {L0,20,30,40,50} , i, target;
int f irst.,middle, fast;
int binsrch(int [] , int, int, int) ;

first=0;1ast:4;

Da.,tal i.lfi
clrscr () ;

Searching aM Soding Techniques

I printf ("Enter element to search: - ") ,'

scanf ("%d'r,&e) ;

i=binsrch (arr, first, fast, target)
if (i== - 1)

printf (,'Element not found") ;

el se
printf ("Element found at posltion: -%d", i+1) ;

getch () ;
i
int binsrch (int list [] , inr fow, int high, inr x)
t

int mid;
if (1ow<=high)

{

mid: (low+high) /2;
if (x==1ist [mid])

return mid;
if (x<1ist [mid])

binsrch (Iist, -Low, mid- 1 , x) ;

if (x>1ist [mid])

binsrch (list, mid+1, high, x) ;

]
return -1;
]

In this technique, a recursive function binsrch is declared with four arsuments as

int list[], an anay in which the target is to be located,

int low as lower bound and

int high as upper bound of a part in which the target is to be located and

int x, a target element to be searched.

lnitially, function binsrch will be called with main array i.e. list[5] where lower bound is 0 and upper
bound is 4 (i.e. size - l). The function will calculate the middle position of the array and will
compare element with it.

If the target is less than the middle item, the function will be called again to ssarch the lower half of
culrent part of the array by setting high to the position just before middle. Thus, the arguments

Dalg,Stfildrrr€ :usittgc Searchrng and Sottin$ Techniques

for low and high to the function will be low and middle -1 respectively where remaining arguments

i.e. list and x will be same. If target is greater than the middle item, the function will be called again

to search the lower upper half of the current part of the array by setting low to the position just after

middle. Thus, the arguments for low and high to the fimction will be middle +l and high respectively

where remaining arguments i.e. list and x will be again same.

The following table shows an exampleof the operation of the binary search algorithm. The first row

of the table is the array indices and second row is the data stored at the indexed location and

remaining rows indicates the index values used for first (F), last (L) and middle (M), at each iteration

of the algorithm. If the target value is 52, its location is found on the 3'd iteration.

Efficiency of Binary Search

To evaluate efficiency of binary search, we have to count the number of comparisons in the best case

and worst case. The average case, which is a bit more difficult, is omitted.

The best case occgrs if the middle item happens to be the target. Then only one comparison is

required to find it.

The worst case will occur if the target is not in the array and the process of dividing the list in half

part continues until there is only one item left to check. Here is the pattern of the number of

comparisons for an initial array having length as an even power of 2 (6Q.

ItemC Left to $earch Comparisons So Far

64 0

32 1

16 2

8 3

4 4

2 5

1 o

o 7,,
:,e 3, 4 5 6 i I I 10 11, 12 13 74, 15

Data 23 27 29 32 34 4'l 46 47 49 52 55 6B 71 74 77 78

1"t iteration F M L

2nd iteration F M L

3'o iteration F M L

tr4A',S!..4 Searctiingand$ortmgT- ri

For a list size of 64, there are 6 comparisons to reach a list of size one, given that there is one

comparison for each division, and each division splits the list size in half. It can be represented as

6: lo9264

ln general, if n is the size of the list to be searched and C is the number of comparisons to do so in
the worst case, C : logzn. Thus, the efficiency of binary search can be expressed as a logarithmic
function, in which the number of comparisons required to find atarget increases logarithmically with
the size of the list.

The following table summsrizes the analysis for binary search.

Number of Gomparisons
(for n = 1000q0)

Comparisons as a function of n

Best Case
(fewest comparisons)

1

(target is middle item)
1

Worst Case
(most comparisons)

16
(target not in array)

log2n

Sorting

Sorting is used to arrange the data in a meaningful order. The order

can be implemented according to the type of elements. If elements

are of alphabetic fype the order will be ascending (from 'A'- 'Z') or

descending ('Z' -'A'). Similarly if elements are of numeric type,

order will be ascending (from lowest value to highest value) or
descending (highest value to lowest value).

So, accordingly sorting order can be ascending or descending, immaterial of type of elements.

For example, it is relatively easy to look up the phone number of a friend because the names in the

phone directory are sorted in alphabetical order. This example clearly indicates that, sorting greatly
improves the efficiency of searching. Because, if we want to find the names in any logical
will take a long time to look up that phone number.

For simplicity we have considered the integer elements to be sorted

in ascending or descending order. Consider the following array.

ng can be defined as iurangement of elements in a specific order.

Qct2018- 2M
What is difference
bptrye€n sorting and
searching?

xarctringandso+insrg h lDAE..Str.u$trs'u6-ieg.C

Unsorted array Ascendins Order Descending Order

Hence, from the above example, it is observed that original anay will be rearranged to place

elements at their appropriate position depending upon sorting order.

Hence, in sorting method elements will be reshuffled and placed at appropriate position according to

their value as compared with others. Sorting can be performed in many ways. Several methods can

be used to sort information using different algorithms. Some examples of these algorithms are the

Selection Sort, the lnsertion Sort, the Bubble Sort, the Quick Sort, and the Radix Sort. There is no

sort algorithm that is clearly better than all others in all circumstances. While selecting the particular

algorithm, the factors like complexity of the algorithm, the size of the data structure (an array) has to

be considered.

We focus on the Bubble Sort, the Selection Sort, and the Quick Sort. The bubble and selection sort

algorithms are very simple. Quick Sort is more complex, but it is highly efficient.

4.1 Sorting Techniques

The array can be sorted by applying various techniques as

mentioned below:

i. Bubble sort

ii. Insertion soft

iii. Selection sort

iv. Quick Sort

The techniques are different in the way they are rearranging the elements. Each and every technique

will be compared with particular element from rest of the elements or all the remaining elements to

decide the appropriate position of them. We will discuss the techniques in detail.

12 37 8 45 21 B 12 2'l 37 45 45 37 21 't2 B

Apr.12,1A - 2M
What is sorting? State
various techniques of
Sorting.

Oct.2010 - 2M
State different types of
Sorting Techniques

$tructure Using C Searching and Softing Techniques

5. Bubble Sort

h this technique, the element will be compared with its immediate next element i.e. the elements are

in adjacent pairs like (0, 1), (1, 2), (2, 3), (3, 4) etc. depending upon number of elements in
n anay. So, pair having two elements is to be considered as previous element and next element.

ile comparing these elements in pair, the elements will be interchanged if previous element is
than next element.

all the pairs will be compared for first time the largest element will be place at the end of an

der the example,

Array

::iz, -: 8: 37 21 45

I ,t? ,tzI 21 45

ffi ,,>srnw
8 12 21 37 45

the array is having 5 elements there will (5 - l) i.e. 4 pairs should be compared. Hence, the pairs
be calculated by size -1. Similarly, when all the pairs will be compared and elements are

ged whenever required,. we can find largest element at the end of an array. Hence
rtparing pairs for only single time is not sufficient. Then how many times we should compare it?

{2 i
',' $7 '

B 45 21

rytu
tz 8 37 ,45.',,

12 8 37 21 45

I 12 21 37 45

.ffi
Here 45 is the largest element among all the 5 elements and will be placed at the last. But also 37 is

second largest among remaining 4 elements. Hence, each and every element is-having its own

,ignifr"u.r.-" according to its value as compared with others and place these elements at their

aplropriate places *""huu" to compare the pairs equal to the number of elements in an array'
I

Hence, to implement bubble sort technique for an array having n elements, we have to compard

(n - 1) pairs for n times.

Though in given example, the array is sorted in 2nd step itself, we have to consider next comparisons

also as nurnber of comparisons required will be totaly depending upon the initial array in which

some elements could bJat their appropriate position initially or in few steps'

Algorithm
i. Consider the first adjacent pair of elements'

ii. If previous element in pair is greater than next element, exchange the values of them'

iii. consider next pair and repeat step no 2 for all the remaining pairs.

iv. Repeat step no. I equals to the number of elements in an array.

#incfude(stdio.h)
#incfude<conio. h>

void maino
t

int atsl ={12,5,32, 18,10},i,J,P,L;
clrscr O ;
for (i=o;i<5;i++)
{ for 1i=o;j(4;j++)

{ if (atjl>a1i*rJ)
{ t=a[j];

aljl=a1i+11 ;

- 1i +ll =t;
]

]
printf ("Sorted array: -\n")
for (i=0;i<5;i++)
printf("8d\n",aIi]);
getch () ;

]

'D,,9,.F,s.tf {+,Slli.9.,.l,,osril9 Searching and Sorting Technrgues

6. lnsertion Sort

In this technique, the element at a particular position will be compared with all the previous elements
i.e. l" element is compared with Oft, 2nd will be compared with l't and Oth and so on depending upon
number of elements in an array. The element which is to be compared with its previous element is
considered as a Pivot element. While comparing these previous elements, if any of them is greater
than the pivot element, that element will be moved to its next position and finally pivot element will
be inserted at its appropriate position. Consider the example

Unsorted array

8t45t21

As we are going to compare previous element, we should start with the element at l't position as
pivot element and compare it with the element at Oth position. Similarly 2'd will be compared with I't
and Oth and so on depending upon number of elements in an array. While comparing previous
elemcnts, if any of the pivot element is smaller that element will be placed in its next position and at
the same time position of pivot will be decreased. Though position of pivot element is decreased, it
is not immediately placed at that position till all the previous elements will be compared. Once, all
the previous elements will be compared, the pivot will be inserted atits proper position.

To apply Insertion sort technique to an array having n elements, the
pivot elements will be at positions 1,2,3...n-l and will be compared
with the elements previous to them i.e. from i-l to 0, where is the
position of pivot element.

Again, the number of comparisons required will be totally dependent upon the initial array in which
some elements could be at their appropriate position initially.

Apn2O15- 2M
Compare the efficiency
of Bubble Sort with
lnsertion Sort?

Algorithm

i. Consider the second element as pivot element'

ii. Compare it with previous elements'

iii. If previous element is greater than pivot element place it at next position'

Decrement the position of pivot element'

iv. Repeat step no. 3 for all the previous elements'

v. Insert pivot element at its decremented position'

vi. Consider next element as pivot element'

vii. Repeat step no.2 up to the last element in an array'

#include<stdio.h>
#include<conio . h)
void maino
{

int a l5l = {12,5,32, 18, 10}' i'1'p' t;
clrscr O ;
for (i=1; i<5; i++)
t

p=a IiJ ;

F-;.

tor(j=:_-a;j>=o;j--)
t

if(atjl>p)
{

a[j*r]=aljl;

]

]
a It] =p;

l
printf ("Sorted arr'aY: -\n")
for (i=o;i(5;i++)
printf("8d\n",aIi]);
getch () ;

8@hi!q$ trd'8q@ Tffirdqia

Selection Sort

This technique selects the largest element and puts it in the position

of higher index. Then it finds the next largest and places it to second

last position and this technique will be followed until the array is
sorted. To put an element at its appropriate place, it will be swapped

with the element already present at that position. As a result, the

array will be sorted from the end position of the array up to first
position.

Consider the example;

3? 43

s 1212r137145

In this method, the element at the highest index i.e. 4 is considered and it will be compared with all
the remaining elements i.e. 0 to 3 and actual highest element will be found. The highest element and

the element at highest index (4) will be swapped. Hence, in this method the highest element will be

placed at highest index. Then element at previous highest index i.e. 3 is considered and again actual

highest element from remaining elements will be placed at this position.

So the highest elements will be placed from highest index to lowest index.

Algorithm
i. Consider the element at highest index as max element.

ii. Compare it with all the remaining prwious elements.

iii. If any element is greater than max element.

Consider it as max element and store its position as 'pos'.

43
f!
r'-r.

Data $Jructure Using C

iv. swap the elements at the position of highest index and element at pos'

v.ConsiderpreviousindexofhighestindexaSnexthighestindex.

vi. Repeat step no. 1 up to the first index'

#include<stdio . h>

#include<conio ' h)
void maino
{

int a t5l = {a2,5,32,18, 1-0}, i,J,p 'Li
clrscr () ;
for (i=o; i<5; i++)
{

p=a Ii1 ;

tor (j=i+1;j<5;j+*)
{

if(a[j]<p)
{

f-^.v-l/ |

p=a[j1;
aIj]=r;

i
]
a Ii] =p;

]
printf ("SorLed arraY: - \n") ;
for (i=o;i<5;i++)
printf("%d\n",aIi]);
get.ch O ;

Quick Sort

Searching and Sorting Tecfiniques

Quick sort is a very efficient sorting technique which sorts the array

in two phases:

i. Partition Phase and

ii. Sort phase.

In partition phase, we divide the array of items into two partitions

und th.tt reiursively sort the two partitions in sort phase, i'e' we

divide the problem into two smaller parts. The sort phase simply

sorts

Apr.2015- 2M
Explain Quick sort
technique with an
example.

Oct.l2,Og *4M
Explain Quick sort with
an examPle.

the two smaller p that are generated in the partition phase. This makes Quick Sort a good example of
the divide and conquers stratery for solving problems.

As we will see, most of the work is done in the partition phase - it works out where to divide the
work. The sort phase simply sorts the two smaller problems that are generated in the partition phase.

ln this technique the partition phase must arange all the items in the lower part and less in the upper
part. To do this, we select a pivot element and arrange all the items which are less than the pivot in
ithe lower part and all those greater than it in the upper part. In the final step, the pivot is dropped and
then lower part as well as upper parts is divided individually by using same technique.

Quick sort: Example

Steps for Partition 1 and Partition 2

Phase
In this example, to make partition, the element at lowest index is considered as pivot element.
The position of element next to it is considered as down (dn) and the position of last element
is congidered as up(up). Firstly, the pivot element is compared with element at down(dn)
position. If pivot element is greater than element at down, the position of down(dn) will be
incremented and same step will be repeated for the element at down(dn) position.

If the element at down(dn) is greater than pivot, the pivot element will be compared with
element at up position. Now condition is exactly reversed as if pivot element is less than
element at up position, the position of up will be decremented and again step will be repeated
for the element at up position.

tb ub

6 1 4 .3 5 2 9 7 8

P dn up

6 'l 4 3 5
\

2 I 7 I

RI up dn

2 1 5 6 I 7 84 3

P

Partition 1

2 1 4 3 5
P dn Uo

Batai:$"tigo1,$F
Searchh$ *nd,,$ irg ,*ohnique:

Due to above steps, both down(dn) and up(up) will cross each other. Tlen pivot element anc

element at up will-b" ,*upp.d. But in some cases they will not cross each other as som(

element can be greater than pivot and some element at up is less than pivot' In this situatior

the element at diwn(dn) andup(up) should be swapped and whole process is repeated again

Hence, pivot elemeni is placed at suctr position where left part elements are less than the pivtl

and elements at right will be greater than pivot'

3. Now by skipping pivot element, we will get two separate partitions.

Sort Phase

In the sort phase, both these partitions are sorted separately using above partition phase' Hence usinl

both the phases array is divided into discrete no. of partitions, where each partition is having onl'

single element which will be placed at its appropriate position and thus whole array will be sorted b'

recursively applying partition phase and sort phase'

The recursive algorithm consists of four steps

i. If there are one or less elements inthe arrayto be sorted, hal

and exit.
ii. Pick left-most element in the array as a 'pivot' element'

iii. Split the affay into two parts where left part is havin

elements larger than the pivot and the right with elemenl

smaller than the Pivot.
iv. Recursively repeat the algorithm for both halves of th

original array.

Example

#include<stdio . h>

#include(conio ' h)
void main ()

{

int a tsl = {12,5,32,L8, 10i, lb,ub' i;
void quicksort (int [] , int, int) ;

clrscr () ;
]b:0 ; ub=4 ;
quicksort (a, lb, ub) ;

printf ("Sorted arraY: - \n") ;

for (i=o;i<5;i++)
printf("zd\n",aIi]);

getch () ,
]

oc,,,2afi - 4M
Write an algorithm for
Quick sort (use
recursion).

nata,Stru{*ui,e,U, gi6g,!..
'.

..-,,,

void quicksor t. (int
{

inf n rln rrn l-.rrru vtvLLrsyrv,

1f (lb<ub)
i

dn= lb; up=ub,'
p=a [dn] ;
vrhi I o /dn(rrn j

\ qrr \ uy /

{

a [] , int lb, int ub)

whi Io /n>=a f dnl

dn++;
url-ri I o /nza [rrnl)

\F \u Luyl /

up- -;
i-f (dn<up)

{

t=a Idn] ;

a Idn] =a [up] ;

a [up] =t;
i

r-a [lb] ;

a [lb] :a [up] ;

a [up] -t;
quicksort (a,1b,up-1)
quicksort (a, up*1 , ub)

9. Heap Sort

The Heap Sort method of sorting uses the data structure-binary
special type of binary tree called a heap.

Definition of heap

A heap of size 'n' is a binary tree of 'n' nodes such that,

i. all the leaves ofthe tree are on adiacent levels

Searching and Sorting Tdrnques

tree. This procedure is based on a

Oct.2O14- 2M
Explain Heap sort
technique with an
example.

tra{4,S,.

ii. all the levels except the lowest level are full

iii. the key in the parent is greater than or equal to the keys in the children.

This implies that the largest element is in the root node.

Example

Algorithm

Due to the heap property that all levels except the last are filled, we can

sequential manner.

The root is at position 0 followed by its children'

Example

The first tree shown above can be represented as

l. top : 0, last : n-l

2. Build a heap out of data [top] to data[last]

3. Interchange data [top] and data[last]

4. last : last -l
5. Repeat from 2 as long as last > 0.

Let us first see how to qeate a heap' If the keys are

26 5 77 I 61 11 80 15

$earchrq ard Sortirq f€dtniqtres

organrze the data in a

15 13 11 7 1 10 6 2

Data Structur€ Using C Searching and Sorting Techniques

We first create a binary tree by successively adding elements to the left and right subtrees.

Binary Tree of unsorted elements

This tree is not a heap. Hence, we have to convert it into a heap by the following transformations.

Build Heap

Ifthe keys in the children is greater than the parent node, the key in the parent and the greater child
are interchanged.

We shall now consider sample data to be sorted using the heap sort procedure.
Data: 26 5 7 I 61 ll 59 15

Iteration 1

ToP=g
Last = 7

Build heap Swap

DatE $lrudufo Usli'gC

Build heap

Iteration 7 Build heap

Heap Sort

At this stage the keys in the tree are in the sorted order.

lgorithmfor Heapsort

. Start

. Accept n elements in array data.

tS

Top=0
Last =2

Top=g
Last =1

Build heap

F...#
Searchlng and Sorting Techniques

3. Convert data into a heap

fori:n/2to0
Heapify (i,n)

4. last:n- l,toP:0.
5. Interchange data [top] and data [last]

6. last : last - I

7. Heapiff (top, last), i.e. recreate heap

8. If last > 0

goto 5

9. Stop

The procedures Heapiff will create a heap with root i having children at position 2i + 1 and 2i + 2'

The steps will be as follows:

Algorithmfor HeapifY

l. Start

2. key: data [i]

3' j:2*i+l
4. If data [] < data [+1]

j:j+l
5. Ifkey > data []

goto 8

lnterchange data [i] and data [l]

Heapiff (,n)

Stop

Efficiency of heaPsort

If the tree has k levels with 2'-t nodes on level i, then the initial creation of the heap will take

time : the sum of nodes on each level * the number of levels the node can move'

i.e. I z'-' 1t-i; = o(n)
i<i<k

6.

7.

8.

0.,ft:F,y, i$

The next loop calls Heapiff n-l times.

Each call to Heapi$ takes O(loqn) time.

Hence the total computing time 0(n logrn).

ln the average case, quicksort is better but in the worst case, heapsort is much better than quicksort.

{ O. Merge Sort

Merging is the process of combining two or more sorted data lists into a third list such that it is also

sorted.

For example, if the two sorted arrays are:

Array 1: 3 5 l0 23 56

Array2z46960
The merged array will be

Array3: 3 4 5 6 9 l0 23 56 60

Merge Sort is based on the above process of merging. In this process, a list is divided into two sub-

lists which are sorted individually and then merged. To sort each sublist, it is further divided into two
sublists and the process continues till sub-lists of size I are obtained. Since a list of size I is sorted,

we can merge adjacent disjoint pairs of sub-lists. The merging process continues till only one list of
size n is obtained.

Strategy

Merge sort follows the Divide and Conquer strategy

1. Divide: Divide an n element sequence into n/2 subsequences.

2. Conquer: Sort the two sequences recursively.

3. Combine: Merge the two sorted sequences into a single sequence.

Dala Stru€ture UsirqG Searching and $orting Techniquee

Algorithm for Merge Sort

l. Start

2. A is an arraY of 'n' elements.

3. low:0, high: n-l

4. if (low < high) i.e. if the anay canbe partitioned

mid = (fow + hig:n) /2 / /nid' is the middle posiLlon

Mergesort (A,low,' mid) / / sort the first half

Mergesort (A, mj-d'+t, high) / / soxt the second half

Merge (a, fow,mid,high) ; / /Merge the sor:t-ed halves

5. StoP.

Example.

Let us consider an example of sorting 8 elements

a[8] : (25,57,48,37,12,92,86,33)

The following program gives the recursive procedure to sort n elements in the ascending order'

Merge Sort
void Merge (int a[],
{

int low, int mid, int high)

f *Merge a[low] ..almidl
Store the sorted list

and almid+rl ..athighl into a sorted flst
in a[]owl ..a[high]

Unsorted List

Divide into two halve

Divide into two ha

Divide into two

Merge sorted sublists

Merge sorted sublists

Merge sorted sublists

86 JJI

86 33I

[86 33]

[86j [33]

\/
133 86I

12 92

112 92

112 e21

l12l te2]

\/
112 \ sZl

\
[12 33

57

57

571

[57]

. 571

JI

t25

125

l25l

48 37

48 371

[48 371

[48] t37l

\/

[37 / 481

48 571

33 37

e2l

e21

86

86574812

Dgta:St1tqg1S ,.iit,.

b is a temporary
1nt i,j,k, b[20];

$.aa

i=low; j=mid+r; k=
while ((i <= mid) && (j
{

if (a[i] < aljl)
b [k++] = a Ii++] ;

e1 se

b [k++]

void main ()

rnt a [20] I n.

array for merging

0;

hiah\ \

a [j ++] ;

]

while(i <= mid)

b[k++] = aIi++];
white (j <= hish)

bfk++l = alj++l;
/* Copy merged elements from
for(j = 1ow, k = 0; j<=high ;

atjl = b[k];
i
void Mergesort (int a [] , int 1ow, int high)
{

rnt mid;
if (low < high) / / more than one

{

mid = (f ow * high) /z;
MergeSort (a, fow, mid) ;

It{ergeSort (a, mid+1, high) ;

Merge(a, fow, mid, high);

efement

/ / oivide a into two sublists
/ / Sort first sub list
/ / Sort second sub list
/ / Merge Sorted sub lists

b Lo a */
j**, k*+) //

i

]

printf("How manY numbers :");
scanf ("8d", &n) ;

printf("\nEnter the unsorted numbers :");

for (i=0; i(n; i++)

scanf ("8d", aa Ii]) ;

Mergesort (a, o, n- 1) ;

printf("\nThe sorted l-ist is ");
for (i=o; i(n; i++)

printf("%d\t",aIi]);

Time ComplexitY of Merge Soft

The best case and worst case time complexity of Merge sort is O(n lqgn)'

In each step, the array is divided into two equal sublists. This takes O(log2n) time. In each step' a

total of n elements are merged in the sublists. Thus, the total time taken is O(n logn). This can be

proved as follows:

T(n) : Time taken to sort 2 sublists of size n/2 + time taken to merge. This can be written as:

I a if n:1, a is a constant
T(n): t zrltvz; * .tr if n >1, c is a constant

When n is a power of 2 i.e. n:2*,this equation can be solved as follows:

T(n) : 2T(n/2)+cn

: 2(2T(n/4) + cn/2) + ai
: 4T(n/4) + 2cn

: 4(2T(n/8) + $/4) + 2cn

= 8T (n/8) + 3cn

kk: 2 T(n/2)+kcn
: an + cn loqn

- 0 (n log;n)

m5

fls
:: .f.,?,$$, $$rtjtr$,Ifqi.ti"ili{iE9'$

Advantage of Merge Sort
I ' It is a very efficient method since its best and worst case time complexity is O(n log"n).

Limitations of Merge Sort
l. Additional memory is required for the merging process. It is not in-place.
2. Stack space is needed due to recursion.

11. Gomparison of Sorting Methods

We have studied various sorting methods. If we have to choose one method to sort n elements, we should
compare the methods and then make the selection. The choice of a method should be done on the basis of
various criteria like the number of data elements, time complexity and space complexity.

The following chart summarizes the sorting methods studied so far.

Method Tlme Complexity Space Gomptexil Rentarks

Bubble
Best:O(n2)
Worst: O(n2)

Additional space only for
temporary variables is
required. (ln place)

Original Bubble Sort method has a time
complexity of O (n'). Only the modified version
has a best case comp.lexity of O(n). Stable
method

Quick
Best:O(n log2 n)
Worst: O(n')

Space depends upon
number of nested
recursive calls or size of
the stack. (ln place)

Uses Divide and Conquer strategy. There is a
large performance difference in the average
and worst case. Non recursive implementation
is complicated. Not stable.

lnsertion Best: O(n)
Worst: O(n2)

Additional memory
required only for
temporary variables. (ln
place)

Befter than Bubble sort. Performance largely
depends upon the ordering of data. Better
performance when data elements are almost
sorted. Stable method

Merge
Best : O(n log2 n)
Worst: O(n logzn)

Additional storage for
auxiliary array is
required. (not ln place)

Uses divide and conquer, non recursive,
implementation is complicated. Stable
method.

l. Sort the following data using Merge Sort.
Show each step in detail: 25.-35,18,9,46,70,4g

Solution
1{F

ider an anay Awith n indices . ranging fromle to An1. we apply merge sorr
A(A0...A"*r) and A(A"...An-1) where c is the integer palrt of n/2. When the two halves are returned

will have been sorted. They can now be merged together to form a sorted array.

Steps for given data to apply the merge sort is,

Sort the following data using Bubble Sort show each

step in detail: 108,97, 71,23,12,57,93,100

Solution

The basic idea behind Bubble sort is to pass the list sequentially several times.

ln each pass compare successive pairs of elements (x[i] with x[i+l]) and interchange the two

elements if they are not in required order. One element is placed in its correct position in each pass-

In subsequent passes, we consider one element less that the previous pass. A total of n-l passes:ne

required to sort 'n' keys. ln first pass, the largest element will sink to the bottom, second largest

element in the second pass and so on.

Start comparing from first pair of elements from the given data as follows:

The given data is

108, 97, 71, 23, 12, 57, 93, 100

W
108r 97 97 97 97 97 97 97
97) 10&-r 71 71 71 71 71 71
71 71 -J 10S-r 23 23 23 23 23
23 23 23 _) 108 --r 12 't2 12 't2
12 12 12 12) 108-r 57 57 57
57 57 57 57 57) 10&- 93 93
93 93 93 93 93 93 10e-l 100
100 100 100 100 100 100 100J 108

97 71 71 71 71 71 71

71 97 23 23 23 23 23
23 23 97 -- 12 12 12 12
12 12 12) 97 ---r 57 57 57
57 57 57 57 97-- 93 93
93 93 93 93 93_J 97 -r 97
100 100 100 100 100 100_J 100-r
108 108 108 108 108 108 108--J

71 --t 23 23 23 23 23
23) 71 --t 12 12 12 12
12 12) 71-- 57 57 57
57 57 57 71 -t 71 71

93 93 93 93J 93 -r 93
97 97 97 97 97 97
100 100 100 100 100 100J
108 108 108 108 108 108

23- 12 12 12

12 23-]| 23 23
57 57r 57-1 57
71 71 71r 71

93 93 93 93
97 97 97 97
100 100 100 100
108 108 108 108

I

$earohing:ff{$ r

*4tArrq,iBr, u$i S,c

Pass 5:

Pass 6:

Pass 7:

3. Write a program to accept N numbers from the user and

sort using merge sort.

Solution

This merge sort method follows divide and conquer algorithm.
#include(stdio. h>
#include(conio. h)
#define MAX_ARY 10
void merge-sort (int x [] , int end, int start)
void malnO /* main function */
{

int ary IMAX_ARY] ;

int j = 0;
pr intf (" \n\nEnter the elements to be sor ted: \n") i
for (j =o ; j <MAX_ARY; j ++)
scanf ("%dt', &arytjl) ;

printf ("Array before Mergesort :") i

12- 12 12 12

23 23-1 23 23
57 57) 57 57
71 7'l 71 71

93 93 93 93
97 97 97 97
100 100 100 100
108 108 108 108

12"- 12 12
23 23--: 23
57 57 57
71 71 7',|

93 93 93
97 97 97
100 100 100
108 108 108

12--t 12
23 23
57 57
71 71

93 93
97 97
100 100
108 108

for(j = 0; j < MAX_ARY; j**)
prinLf (" ?d", aryIj]);
printf("\n");
mergle_sort (ary, 0, MAX_ARY - 1) ;

printf ("After Merge Sort : ");
tor(j = o; j < MAX_ARY; j**)
printf(" 8d", aryIj]);
nr i n I f / [\ h [\ .yr !rrL! \ \rr t ,

getch () ;
| /* end of main function */
/* t',tethod to implement Merge Sort*/
void merge_sort (int x [] , int end, int start)
{ int j = o,'

const int size = start - end + L:
int mid = 0;
int mrgl = 0;
'i nf mrd) = n.

j-nt executing IMAX_ARY] ;
if (end == start)

return;
mid = (end + starL) / 2t
/* recursive call to the merge sort function
merge sort(x, end, mid);
merge_sort (x, mid + L, start) ;
for(j = 0; j < size; j**)
executinStjl = xlend * jl;
mrgl- = 0;
mrg2=mid-end+1;
for(j = 0; j < size; j**
{ if (mr92

if (mrgl- <= mid - end)
if (executing Imrg1] > executing Imrg2])

xlj + endl = executinglmr92++J;
el se

xtj + endl = executingImrg1++J,'
e1 se

xtj + endl = executi.g[*tg2++J'
el-se

,
* ti + endl = executing [mr!I1++] '

l /* end of merge sort function* /
4. Sort the following numbers in an ascending order using

Heap Sort Method: 23r15,29,11,01, 07

Solution

Step 1: Create a Heap

29.15.23.11.O1

I

Searching and Sorting Techniques I

Step 2: Sorting

5. Sort the following data, using insertion sort (show each
step) in descending order: -5,8,12,641 5,88

Solution

Sorting using insertion sort in descending order
Elements/values: -5, 8, 12, 64, 5o 88

Step 1: Compare 2nd element with lst, as 8 > - 5, swap it.

.'.8 -5 t2 64 s 88

Step 2: Compare 3rd element , i.e., 12 with I st and 2nd elements as 12 > 8, shift it as first element
and move other elements by I position.

.'.r2 8 -5 64 5 88

Delete,
el,amer*

Sortedafralr Acton

29,15,23,11,01,07 29,07 interchange 29 and 7 in order to
delete 29 from heap

7, 15,23,11,1 29 Delete 29 from heap and add into
sorted arrav

23,',t5,7,11,1 7,23 29 interchange 7 and23 as they are not
in order in the heao

1,15,7,11,23 23,1 29 interchange 23 and 1 in order to
delete 23 from heao

1,15,7,11 23 Delete 23 from heap and add into
sorfed arrav

't5.1,7.'t1 1,15 23.29 interchange 1 and 15 as they are not
in order in the heap

15,1't,7.1 1,11 23,29 interchange 1 and 11 as they are not
in order in the heap

1,11,7,15 15,1 23,29 interchange 15 and 1 in order to
delete 15 from heao

1,11,7 15 Delete 15 from heap and add into
sorted arrav

11,1,7 1.11 15,23,29 interchange 1 and 11 as they are not
in order in the heao

7,1,11 11,7 15,23,29 interchange 11 and 7 in order to
delete 11 from heao

7,1 11 Delete 11 from heap and add into
sorted arrav

1,7 7,1 11, 15,23,29 interchange 7 and 1 in order to
delete 7 from heap

1 7 11, 15,23,29 Delete 7 from heap and add into
sorted arrav

Empty 1 7, 1't,
15.23.29

Delete 1 from heap and add into
sorted arrav

Empty 1,7, 11,
15.23.29

The sorted numbers are: l, 7,ll,15,23,29.

trf;|4 f{reture siqg€ Searching and Sorting Teclrniqqeq

Step 3: Compare 4th element, i.e., 64, as (64>12\ shift it as first element and move others to the
next.

:. 6412 8 -5 5 88

Step 4: compare 5th element, i.e., 5 with all previous elements. (5 > -5) and shift it
position.

...641285-5
Step 5: Compare 6th element, i.e., 88, as (88 2 64), add it at first position and move the other

elements to the next.

.'.8864 1285-5

.'. Sorted elements in descendins order is 88 64 12 8 5 - 5

6. Sort the following data, using selection sort in descending
order (show each step: 3,66,-15r-99,6,27\.

Solution

Element/values: 3 66 _15 -qg 621
Step 1: Compare 1'l element with all elements and swap if necessary.

a. 663 *15 -99 627
Here, 66 is compared with all next elements. And it is highest element so on need to
swap.

66 3 -15 -99 6 27
Step 2: Compare IInd element with all other next elements and swap if necessary.

66 3 *15 -99 6 27

a. 666*15-99327(6>3)
b. 6627 -r5 -99 3 6 (27 > 6\

Step 3: Compare III'd element with all elements and swap if necessary.

6627 -ls -99 3 6

a. 6627 3 -99 -15 6 (3 >*15)
b. 6627 6 -99 -r5 3 (6 > 3)

Step 4: Compare IV'h element with all elements and swap if necessary.

6627 6-99-ts3
a. 66 27 6 -15 -99 3 (-15 > -19)
b. 6627 63 -99 -r5 (3 >-ls)

Step 5: Compare Vth element with all elements and swap if necessary.

6627 63 -99 -t5
a. 6627 63 -15 -99 (-15 >-99)
Thus, in 5 iterations, elements are sorted using selection sort in descending order.
6627 3 -15 -99

at appropnate

s

7. Sort the following elements using merge sort. Show each

step in detail: 5, 8, 89, 30,42092,64,4,21r 56.

Solution
#include<stdio. h>
#include<conio. h>
void main ()

{
int num[10] = {s, e,89,42,92,64,4,2t,sa};
int ans [10] ;
ans[0] = num[0];
int i,j,k,1,temp;
clrscr O;
j=0,k=0;
nli nt-f { "\n ori oinal Numbers ") ;
f or (i=0;i<10; j-++)
{

printf("Zd",numlil);
].

for(i=1;i(=16;i++)
i

nrinl-f
if (num
{

ans Ii] = num Ii] ;

J++;
]
f or (1=1;1<=i;l_++)
{ printf ("8d\t,ans tll);
]
if (j==1ollk==10)

br eak;
i
printf ("\n Number AfLer using Merge Sor t

Method") ;
f or (i=1;i<=10;i++;
{

printt("2d", anslil);
]
getch () ;

]

8. Sort the following elements by using quick sort: 48, 29r 8,

59,72,88

Solution
i n c l u d e (s t d i o . h >

#include(conio. h)
int partition (inta [] , int 1ow, int high)
{
i nf i i t- omn lra-...- , .. -y ;
key = a[1ow];
i = fow+1;
j = hish;
while (1)

"\n Comparing Num "2d" , i+1) ;
il

B4ai$t!, Seafotiing and S-oriit{g T.@|riqueg

a I j I)

c emp
- ri 1o Lal
a t j l

i
else
{

t emp
a I low]
atjl

]

t

]
]
void quicksort (int a [] , inL low, -int high)
{

int l;
if(1ow < high)
{

j = par tition (a, 1ow, high) ;
quicksort (a, 1ow, j - 1) ;
quicksort (a, j *1, high) ;

]
i
void main ()

{

whif e (i<higrh
1++;
while (key

l--;
if(i<j)
{

&& key

it
it
mp;

a [1ow]
= a t j l

int i, n, a[6]= {ae, 29, 8,
nr i nf.f ("\n Enf.er the val-ue
scanf ("2d", an) ;
quj.cksorL(a,0.n-1);
nrintf("\n 'l'ha Snrl-od ArrA\/\ rr

for (i=0;i<n;i++)
printf("\n?d", aIi]);

59,72, 88];
of N");

is\n");

9. Sort the following elements by using selection sort method:
10, 22, 65, 223, 87, 343, 98, 244

Solution
#incl-ude<stdio. h>
#include(conio. h)
void selection sort (omt a [] , int n)
{ int i, j , po;, smal I Lemp;

for (i=0;i<n;i++;
{

smalf = alil;
pos = L;
for(j=i+1;j<n;j++)
{

if(alil <sma]1)
{

sma11 = alil;
pos = f ;

Bel4,$lfrjr.:r .: .::::ii: ir:: : i:.:: iil:::.:.: -r:r:L:r!:-:r.il i.r:ti:r..::: :.,'a::::ti. ". "'

i]
temp = alposl;
alposl : alil;
a Ii] = temp;

]]
void main ()

t
int i, n, a[8]= {rO,
clrscr O ;
pr intf ("\n Enter the
scanf ("2d", tn) ;

Searchirq ard Sofltng Tec+rniquor

22, 65, 223, 87 , 343, 98, 2441

Number of Elements to Sort\n,')
sef ection sort(a,n) ;
printf ("\; The Sort Ef ements are \n,,) ;
f or (i=0;i<n;i++)

printt("Zd",aIi]);
getch () ;

10. Sort following data by using insertion sort techniques:
56,98,23,67,3,87,45,7 7,gg

elements A list of unsorted elements

Index- 0| -- |l)ol
A

I

A list of sorted

12345678
lqs 23 67 3 87 4s 77 esl

8

eeI

1" iteration: (place element a [] at its correct place)

0 I 2 3 4 5 6 7 8

lso qsl lzz at z st +s tt gg
I

sorted

2nd iteration: (place a[2] atits correct place)
012

lzz sa gsl
sorted

3'd iteration: (place a[3] at its correct place)

0123
123 s6 67 98

sorted

4tb iteration: (place al4l atits correct place)

0123
l3 23 s6 67

unsorted

3 4 5 6 7

lat 3 87 4s 77

45
llg 87

unsorted

678
45 77 99

esll

unsorted

567
87 45 77

4 8

eel

Solution

w,
Sth iteration: (place a [5] at its correct place)

0123
t3 23 56 67

sorted

6th iteration: (place a[6] at its correct place;
0123

l: n 4s 56
sorted

7th iteration: (place al7l atits correct place)
0123

l3 23 4s s6
sorted

8th iteration: (place a [8] at its correct place)
0123

l: n 4s s6

Sg.ap.tri,m:S,
;;S,

45
87 981

678
l+s tt ggl

unsorted

456
67 87 e8l

78

456
67 77 87

7
esl

456
67 77 87

sorted

11. Compare the efficiency of Bubble sort with Selection Sort?
Solution

Efficiency of bubble sort with selection sort
i. Simplicity: Both algorithms are equally simple to write.
ii. Time complexity: Both are not data sensitive. Both of them having a timing requirement of

o(n').
Sort stability: Both sorting algorithms are stable.
Storage requirement: No additional storage is required.

lu.
lY.

ltt sg I

unsorted

8

lqql
unsorted

78
98 991

@PUouestions
What is difference between sorting and searching?
How to calculate count of Best, Worst and Average case?

Compare the efficiency of Bubble Sort with Insertion
Sort?

Compare the efficiency of Bubble sort with Selection
Sort?

"When Linear Search Method will be more effrcient".
Comment.

Explain Linear Search method.

IOct.2015 - 2Ml

IAor.2015 - 2Ml

tAor.2015 - 2Ml

lOct.2014 - 2Ml

lOct.2012- 2Ml

lAor.2012 - 2Ml

lApr.2012- 2Ml

1Aor.12.10 - 2Ml

tApr.2011 - 2Ml

LOct.2015- 4Ml

lOct.2015 - 4Ml

lApr.2015 - 4Ml

lAor.2015 - 4Ml

19ct2014- 4Ml

lOct2014- 4M

lOct2012- 4Ml

1Oct.12.09 - 4Ml

IAor.2O12- 4Ml

lApr.2012- 4Ml

lAor.12.Oct11- 4Ml

lOct.2011- 4Ml

lOct.2011- 4Ml

lOct2011 - 4Ml

lApr.2011- 4Ml

IAor.11.Oct.10 - 4Ml

7.

8.

9.

Searching qld Boiling Techniques

What is a binarv search tree?

l. Sort the following data by using selection sort techniques:
87, 45, 12, 90, 67, 54, 34, 23, 88, 65.

?.. Explain linear search method with an example.

3. Sort following data by using Insertion sort techniques:
\ 2,5,122,9,7,5 4,4,23,88,60.

4. l,:xplain Quick sort technique with an example.

5. Explain Heap sort technique with an example.

6. Sort following data by using insertion sort techniques:
56,98,23,67,3,87,45,7 7,99

7. Sort the follorn,ing data using Merge Sort.

Show each step in detail: 25, 35, 18, 9, 46, 70, 48

8. Explain Quick sort with an example.

9. Sort the following data using Bubble Sort show each step in
detail: 108, 97, 7 l, 23, 12, 57, 93, 100

10. Explain Selection Sort technique with an example.

I l. Explain Insertion Sort with an example.

12. Sort the following numbers in an ascending order using Heap

Sort Method: 23, 75, 29, ll, 0I, 07

13. Write a program to accept N numbers from the user and sort
using merge sort.

14. Write an algorithm for Quick sort (use recursion).

15. Sort the following elements using heap sort: 24 6,75,12,60, l5

16. Sort the following data, using insertion sort (show each step) in
descending order: -5, 8, 12,64,5,88

o,
ulst0ll

What is Sorting? State various techniqurls of Sorting.

LIilKED

1. Introduction

We use the concept of 'Iist' very frequently in our day-to-day lives. We make a list of tasks to be

done in the day, a lady makes a list of shopping items, and students make a list of the topics to be

studied and so on. However, once the list is made, it hardly remains the same. As the day progresses,

there are new tasks to be added, completed tasks to be removed, tasks to be reordered and some tasks

to be cancelled. Thus, there are constant modifications to the list i.e. the list is'dynamic' in nature.

The term 'list' refers to a linear collection of data items such that there is a first element, second and

. . . a last element. Data processing frequently involves storing and processing data organized into
lists.

Qfaltule 3

Lrsr

Data Structure Usmg C Linked ist

The following shows a list of some beautiful colors.

If we wanted to store this list in memory, we could use the sequential representation i.e. store the
colors in an array. Arrays use sequential mapping i.e. the data elements are stored in memory, fixed
distances apart. This makes it easy to compute the location of any element in the array.

If the elements of the list are going to be fixed, then using an anay will be a good method of storing
the elements of the list. But if we wished to insert the colors 'Indigo' and 'Yellow ' to complete the
colors of the rainbow, it will mean that we would have to move some colors to make place for the
missing colors. The same would apply if we had to remove certain colors from the list. Moreover.
the use of arrays will impose an upper limit on the maximum number of colors in the list.

Thus, in general, the use of sequential representation for a list, which
be inadequate due to the following reasons.

Limitations of Sequential Representation (Array)

l. An array is a static data structure i.e. the size of the array
remains fixed.

is dynamic in nature, proves to

Thus, even if the data structure actually uses less amount of storage to store elements or
possibly uses no storage at all, the unutilized memory cannot be used for other purposes.

Moreover, if we require more space than allotted, it cannot be increased during run time.

2. Most real-time applications process variable size data. The amount of data to be manipulated
and hence the storage requirements cannot be predicted in advance during design time.

3. Often, we need to insert, delete, move and reorder data. For this, a lot of elements will have to
be moved, which will require a lot of processing time. If these operations are to be carried out
very frequently, the processing time will be enormous.

Hence, to improve the effrciency, we have to find another method of representing the elements of the
list so that the operations can be performed in a reasonable amount of time.

2.

trglq Pe{r.$ing. tlnked List

Goncept of Linked Organization

solution to the above problem is that instead of using sequential representation, a .linked
:sentation' or 'linked organization2 should be used, i.e. unlike an array, where elements are

sequentially in memory, items in a list may be located anywhere in memory. To access
ts in the correct order, we store the address or location of the next element, with each element

f the list.

nition: Linked Organization

Linked Organization is one in which the elements of the list are logically next to each other, bul
'ysically, they may not be adjacent.

nition: Linked List

linked list is an ordered collection of data elements where the order is given by means of tintrs i.e.
rch item is connected or 'linked' to another item.

ically a linked list consists of ,nodes, . Each node contains an item field and a link. The item
ield may contain a data item or a link.

of Linked List

odvantages of a Linked List over an Amay are os:

Linked List is an example of Dynamic Data Structure. They
can grow and shrink during execution of the program.

Representation of linear data structure (polynomial, stack, and
queue) can be easily represented using Linked List.

Linked list represents efficient memory utilization. Memory is
linked list. Memory is deallocated when it is no longer needed.

2
Oct2015 - 2M
What are the advantages
of array over linked lisf?

Apr.2O12- 2M
What are the advantages
of a Linked List over an
Array?

not pre-allocated like array in

operations on linked list as Insertion and deletion are easier and efficient. lt can be carried out
in constant time.

Linked lists do not need contiguous blocks of memory; extremely
array might not be able to fit in memorv.

Linked list storage does not need to be preallocated (again, due to arrays needing contiguous
memory blocks).

Iarge data gets stored in an

3. lmplementation of Linked List

In the previous section we have defined a linked list to be a linked collection of nodes, each

containing some information. In this section, we will think about how to implement the linked list.

The main issues to be considered are:

a. How to store the elements of the linked list in memory?

b. How to indicate their logical order?

c. How to perform various operations on the list like insertion, deletion etc?

The way in which we will perform operations on the list will depend upon the method used to store

the nodes of the linked list.

We can use two methods to implement the linked list:

l. StaticRepresentation.

2. DynamicRePresentation.

3. { Static RePresentation

An array is used to store the elements of the list. The elements may not be stored in a sequential

order. The elements can be stored at any position in the array. The logical order can be stored in

another array called o1.ink'. The values in this array tell the logical order of the elements in the array

DATA. The corresponding 'link' of a data item tells where the next element is'

For example, let us consider our list of colors. The first color in the list is 'Violet' followed by
.Blue,. These colors can be stored anywhere in the array but the position in the Link field will tell

where the next color in the sequence can be found. All we need to know is the starting position of the

list. In this case. it is 3.

Data Slru€tureUsrng C

Start:3

LrNK[3]:
LINKIO] =

LrNK[4] :
LrNK[6]:

LrNKlll:

DATA

O DATA

4 DATA

6 DATA

1 DATA

t3l Violet

tOl Blue

I4l Green

16l Orange

tll Red

g,fts#

-l = List ended

Advantages

l. The implementation is simple.
2. For performing operations like insert, delete etc, all we have to do is update the links.

Disadvantage

I . Since we are using an array to implement the I inked list, there will be the limitation of a static
data strucfure; namely fixed memory size.

A linked list is a dynamic data structure i.e. the size of the list grows and shrinks depending upon the
operations performed on it. This means that when we insert elements in the list, its size should
increase and when elements are deleted, its size should decrease. This cannot be possible using an
array which uses static memory allocation i.e. memory is allocated during compile time. Hence, we
have to use''dynamic memory allocation'where memory can be allocated and de-allocated durins
run time.

DATA LINK

4

-1

0

o

4
I

3.2 Dynamic RePresentation

The Static representation uses ilrays, which is a static data structure and has its own limitations.

Another way of storing a list in memory is by dynamically allocating memory for each node one by

one and linking them. Since we will dynamically allocate memory using functions like malloc and

calloc, we will have to use pointers. Moreover, each node will be at random memory locations, so

we have to store the addresJ of the next node along-with the data in the node. All we have to do is

remember the address of the first node in an external pointer.

The node structure will thus contain twofields:

a. data or info : which stores the information

b. link or next : whichstores the address of the next node.

node

Each node contains two parts, data and link. The data part may contain a single data item or a
composite one like an entire record or it may be a link. The link or next part contains the address of
the next node in the list. The last node contains a special value called 'NULL' which indicates end

of the list.

The tinked list for our colors can now be pictorially shown as below:

Advantages
l. Since memory is dynamically allocated during run-time, memory is efficiently utilized.

2. There is no limitation on the number of nodes in the list; except for the available memory.

3. lnsertion, deletion and traversal can be easily done.

4. Memory can be freed when nodes have to be deleted.

lnternal and External Pointers

In the example above, each node has a pointer called 'link' to the next node. This pointer is stored

within the node. Hence it is called an internal pointer.

The pointer called 'start' stores the address of the first node of the list. This pointer is not contained

within a node. Hence it is called an external pointer.

info

Types of Linked Lists

We can classify linked lists on the basis of,

l. Number of internal pointers in the node - singly or doubly
linked list

2. Kind of collection - linear or circular linked list.

l. Singly Linked List: Each node in this list contains onlv one
pointer which points to the next node of the list.

prev info nextffi
node

Doubly Linked List: Each node in this list contains two pointers; one pointing to the previous
node and the other pointing to the next node. This list is used when traversing in both
directions is required

The Singly linked list and Doubly linked list can further be of two types depending on the kind of
collection the list stores. The lists can be either organized ina linear manner or circular manner.

i. Linear Linked List: In this list, the elements are organized, in a linear fashion and the list
terminates at some point i.e. the last node contains a NULL pointer.

node node

Linear Singly Linked List

Linear Doubly Linked List

NULI ----+lH ---N
1-------l

_____+l
H NULt

Linked Ust

ii. Circular List : In this list, the last node does not contain a NULL pointer at the end to signify

the end of the list, but the last node points back to the first node i.e. it contains the address of
the first node.

Circular Singly Linked List

Gircular Doubly Linked List

Sometimes, an extra node is placed at the beginning of the list. Such a node is called 'Header Node'.

This node does not store any data element but can be used to store some control information like

number of elements etc.

5. Operations on a Singly Linked List

The various operations tltat can be performed on a singly linked list are given below

Traversing the list: Visiting each node of the list is called traversal.

Computation of Length: Count the total number of nodes in the list.

Insertion: A node can be inserted at the beginning, end or in between two nodes of the list.

Deletion: Deletion from a list may be done either position-wise or element-wise.

Searching: This process searches for a specific element in the list.

1.

.,

3.

4.

5.

Pp$:qFs*urs Usifi$ G, :',,, [.frt$dlr4

6. Reversing or Inversion: This process reverses the order of nodes in the list.

,7. Concatenation: This process appends the nodes of the second list at the end of the first list i.e.
I it joins two lists.

We shall see how to perform these operations on a Singly linked list in the following sections. But
1first we have to study how to create the list. Only after that we will be able to perform the above
operatrons.

Greation of a Singly Linked List

Each node of a linked list contains info / data part and a link/next part which is a pointer. The
pointer stores the address ofthe next node.

We can implement a node using a self referential structure (structure which contains a pointer to
itsel0.

This stmcture will have two fields which can be written as

struct node
{

int data;
struct. node * next;

We can also use the keyword
done as follows.

typedef struct. node
{

int data,.
struct node * nexL;

This declaration just creates the structure template. No memory is allocated at this point. Memory
ll be allocated when variables are created.

'o create nodes during run-time, we will have to use functions like malloc and calloc and nodes can
de-allocated using function free.

operations require pointers. Hence we will have to use a pointer to NODE.

typedef to create a user defined type called NODE. This can be

data next

Ee-tfi ;st{rgir€-:usiagc

Example to create a single node:

NODE * newnode;
newnode = (NODE

newnode -+ data
newnode -+ next

*)ma]1oc (sizeof (NODE)) ;
= 10;
= NULL;

Unked Ljst

1.

2.

slist = NULL

. ffi{-.'l-uttls. sltst ,,. newnode

temp

The ulgorithm to create a linked list containing 'n' nodes can be written as follows:

Algorithm

l. Start

2. Initialize the pointer to NULL i.e. slist: NULL

3. Accept number of nodes to be created in n.

4. Counter: I

5. Create a new node using malloc and store its address in newnode

newnode-{toTruu[l
data next

In order to make the code more readable, we can use the following statement.

define NODEALLOC (NODE *)mal1oc (sizeof (NODE))

To create a linked list, we will create the nodes one by one and add them at the end of the list.

The list will be pointed to by an extemal pointer, which stores the address of the first node of the list.
In the example below, we are creating three nodes with values 10, 20 and 30 and making the linked
list.

The list is pointed to by a pointer called 'slist', which is initially].ttJLL.

4h

Bgtai$tfigr{g:U.Bif lit$

6. If slist is NULL then (i.e. the list is empty)

store the address of the new node in slist i.e. slist: temp: newnode

else

attach newnode to temp i.e. temp->next:newnode

Move temp to the last node

7. lncrement counter

8. If counter <: n

goto 5

9. Stop

This function creates a list and returns a pointer to the first node of the list

Function: Create a List
#def ine NODEALLOC(nOOr *)mal_l-oc (sizeof (NODE))
NODE * createlist (NODE * slist)
{

int n, count ,'

NODE * temp, newnode;
slist = NULL; /* initializo r;qf1;er to NULL */
^-.1 -f C t ilrr^.-

--5lr lrtLr \ nuw lndny nodeS; ") ;
scanf ("%d", &n) ,'

for (count = 1; count (: n; count++)
{

newnode = NODEALLOC;

newnode -) next = NULL;
printf("\n Enter the node daLa:,,);
scanf (us"d', &newnode -+ data) ;
if (slist==NULL)

Sli-SL = tFmn = nar^7nnda.
else
{

temp -) next = newnode;
temp : newnode;

i
]

ral- rrrn c l i ct- .

]

Unk€d Lisr

s

5.2 Traversing a List

I,i$edlkr

In order to display the elements of a list we will have to move from
the first node to the last using the links till we reach NULL. This is
called displaying the list. The address of the starting node has to be

known.

-+ data) ;

/* move temp to the next node */

Algorithm

1. Start

2. slist is the pointer to the first node of the list.

3. if slist:: NULL

Display "List is Empty"

Go to step 8.

4. temp is a temporary pointer for traversal

5. Make temp point to the first node i.e. temp:slist.

6. If temp I NULL

Display the data of temp i.e. display temp->data

Move temp to the next node i.e. temp{emp->next.

7. Repeat from 6 as long as temp + NULL.

8. Stop

Function: Display a List
void disp_list(NODE * slist)

NODE * temp = slist; /* Store address of first node in temp */
if (temp == NULL)
t

printf ("List is empty") ;
return;

]
while(temp l= NULL)
i

printf ("?d\n ", temp
temp = temp -+ next,'

]

OgL2OOS- 4M
What do you mean by
Traversing a Linked List.

Data.S.tr,udllre Using S Unk€d tist

This function can also be written as a recursive function:

Recursive Function
void rec display(NODE * slist)
{

NODE*temp=slist;
if(temp l= NULL)

{

printf ("%d",temp --+ data
rcn d i qnl arr /tomn -r novt-)r 1r!^u/

i

5.3 lnserting an Element in the List

In many situations we may have to insert an element in the list.
where it has to be inserted.

For this, we must know the position

There are three possibilities that we can consider:

i. Insert at the beginning: To insert a new node at the
beginning of the list, the pointer pointing to the first node will
have to be changed such that it now points to the new node.

The steps performed are illustrated in the diagram below. The function returns the new address
ofthe first node.

newnode--; next = list;

list = newnode

newnode

Function: Insert at Beginning

NODE * lnsertbeg (NODE * list, inL num)
i

);

Oct.20O9 - 4M
Explain with suitable
example how data is
inserted into a linked list
at beginning and at end,

ryf struq,ureU3irqs:

ll.

NODE * newnode;
newnode = NODEALLOC;

newnode -+ data = num;
newnode -) next = fist;
list = newnode;
return list;

]

Insert at the end: To insert a new node at the end of the list, we will have to move
temporary pointer to the last node and then attach the new node after the last node.

temp

newnode

newnode --+ next = NULL:

temp -+ next = newnode

Function: Insert at End

NODE * insertend (NODE * fist, int num)
{

NODE*newnode, *temp,'
newnode = NODEALLOC;

newnode -+ data = riUnrj

newnode -+ next = NULL;
/* MO\/R iomn t^ fho]aq1- nnda */

I

for (temp = list; temp -+ nextl = NULL; temp = temp -) next);
/* Link newnode to temp */

temp -+ next = newnode;
return fist;

]

Insert in a intermediate position: To insert a node in between, we have to know the position
of insertion and move temp to the node before this position. The new node has to be linked
between temp and the node after temp.

newnode new node---r next = temp --+ next;

temp -> next = newnOde

llt.

temp

Li!!t84ljq

Function: Insert at intermediate position

NODE * insertbetn (uooe* list, int pos, int num)
{

NODE * newnode, *temp,.
int i;
newnode = NODEALLOC;

newnode -+ next = NULL;
newnode -+ data = nurTrr'

,/* Move temp to node at pos -1 */
for (i=1; i (pos-1 && temp-) next ! = NULL; i++)

remp = temp -+ next;
newnode -) next = temp -) next,'
temp -+ next = newnode;
return list;
]

All the above three functions can be combined into a sinsle function as below:

Function: Insertion

NODE * insert(NODE * fist, int pos, int item)
t

NODE*newnode,*temp;
int i;
newnode = NODEALLOC ;

newnode -+ data = it.em ;

if (pos = =r) /*insert at beginnrng */
{

newnode -+ next = list;
list = newnode ;
teturn list;

]

/*Move f.emn lo node at
for(i=1,temp=list;
temp = temp -+ next;
newnode -+ next = temp
temp -) next = newnode
return list;

--) next;

one position fess *,/
(i<pos -1)&&(temp-+next != NULL) ;i++)

DataStruc*ure Using G Linked List

5.4 Deleting an element from the list

For deleting an element, we have to locate the node at the specified position and free the node after
I

linking the nodes before and after the node to be deleted.

As in the casefor insertion, deletion of an element can be done at three positions:

i. Deleting the first element: After deleting the first node from the list, the next node will
become the first node and hence, we will have to change the pointer to the list.

list -- - i
temP = 1151'

list = temp -+ next

free(temp);

Deleting the last element: To delete the last node, we have to move a temporary pointer to
the second last node and then free the last node. The second last node should now contain a

NULL link.

temp templ

il.

list

lll.

templ = temp -> next;

temp -+ next = NULL;

free(temp1);

Deleting an intermediate element: To delete a
temporary pointer to the node at position-l so that

deleted by making appropriate links.

temp

node in between, we have to move a
the node at the specific position can be

templ

%
templ = temp--+ next; i--------- ------i
temp-+ next = templ -+ next

free(temp1);

temp

Function: Delete at a specifte position

NODE * defete (lfOln * 1ist, int pos)
t

NODE * temp, * templ ;
if (pos = = L) /* Del-ete the first node *,/
i

Lemp = list ;

list = list -+ next ;
f ree (temp) ,.

return list;
]
/* Move temp t.o the node at posiLion - 1*/

for (1=r, temp = fist;(i < pos-1)&&(temp != NULL);i++;
temp : temp -) next;
templ : temp -+ next ;

,/* templ is the node to be deleted */
temp -+ next - templ-) next;

/* link bemp to node after templ */
free (temp1);
return list;

i

The above function deletes the element at a given position. We can also delete a specific number
from the list. This can be done by 'searching' the number in the list and then deleting that node
which contains the number.

5.5 Searching an Element in the List

To search an element in the list, we will have to traverse the entire list and compare the data in each
node. If found, we will retum the node address and NULL otherwise.

Algorithm

l. Start

2. list is the pointer to the first node of the list.

3. temp is a temporary pointer for traversal.

4. Accept num i.e. the number to be searched in the list.

Fqr.2012- 4M
Write the function io
insert and delete a lvlode
in the beginning of a
Singly Linked List.

q1ta strrqry Usins c i::1.'tinl d,rtiiel

5. Make temp point to the first node i.e. temp:slist.

6. pos: I

7. If temp->data:: num then

Display "Element found in the list at position pos"

Go to step I I

Move temp to the next node i.e. temptemp->next.

pos: pos + 1

If temp + NULL

Go to step 7

Retum temp.

Stop

Function: Search a specijic number in the list

NODE * search(NODE * list, int num)
{

NODE * temp;
for(temp = list; temp! = NULL; temp = temp -) next)

if (temp -+ data = = num)
return temp;

return temp;
J

We shall now write a menu-driven program to implement the above operations on the linked list.

fnlE
#include <stdio.h>
/ ** * ************** GLOBAL DECLARATIONS***************** f
typedef struct node
i

lnt data;
struct node *next;

} NODE;

#define NODEALLOC (NODE *)malloc (sizeof (NODE))

- :-,

8.

9.

10.

I l.

t2.

Oct2O72- 4M
Write a'C'Program to
search given element

i:H.*"
sinsly unked

Data Strurfure Using G

************************ CREATE ************** ** * * * * * f

NODE * creat,elist(NODE * list)
i

NODE * newnode,* temp;
int i,n;
printf("\nHow many elements :");
scanf ("?d'r,&n) ;

for (i=1; i(=n; i++)
t

newnode=NODEALLOC;
newnode-)next=NULL;
printf ("\nEnter the efement") ;

scanf ("?d", &newnode-)data) ;

if (list==NULL)
list=temp=newnode;

el se
{

temp -)next=newnode;
temp=newnode;

]
]

return list;

ifts{

f * ** * * * *)t*** * ** **** * *** INSERT
NODE* insert(NODE * list, int
i

NODE * newnode, *temp;
int i;
newnode=NODEALLOC;
newnode-)next.=NULL;
newnode -) data=n;
if (tist==NULL)
{ fist=newnode;

return list;
]
if (pos==r) /***
{

newnode-)next=list;
list=newnode;
return list;

i

**************** * * * * ** f
n, rnt pos)

insert at position 1 ** /

/** mnrro l-omn l-^ l-ho nnda al. nnc - 1 * /uvrL,y uv qL vvo L /

for (i=1, temp=1ist;i1=pos-2 && temp->nexL! =NULL; i++)
famn=l-amn-)nav1-.

newnode -) next = temp -)next ;
temp-)next=newnodei

W
return list;

]
/ * * * * * * * * * * * * * * * * * * ** * * DISPLAY* * * * * * * * * * * * * * * *'* * * * * * /
void display (NODE * list)
{

NODE * temp;
for (temp=l-ist; temp! =NULL; temp=temp- >next)

printf ("8d\t", temp- >data) ;

]
/***************** DELETE BY POSITION *******t/.********/

NODE * deletepos(NODE * list, int pos)
{
NODE * temp,* templ;

int i;
if (pos==1) / * Delete the firsL node */

{
!^'."--1 i ^ts.Lglttu-r!DL,

list=list -)next;
Fraal l-amn\.!!vv \ vvrrry/ t

return list;

(i:1, temp=list; i(=pos -2 && temp! =NULL; i++)
temp=tem'- >next;
(temp==NULL)

printf ("\nPosition out of range") ;
return list;

]
templ=temp- >next;
temp - >next= temp1 -)next ;

free (temp1) ;
return l-ist;

]
/******************** DELETE BY VALUE ***************** f
NODE * deleteval(NODE * l-ist, int num)

{
NODE * temp=list,* temp1;

if(temp-)data==num) /* first node */
{

l-amn=li<f.uvrrry ++vv,

list=list -)next;
Fraa t t-amn\ .!!vv \ verrryt t

return fist;
]

for (temp=l-ist; temp- >next I =NULL; temp=temp- >next)

{
i f /tomn-)naxt-)data == ngm)r! \ uvrrrP z rrvr

li+t;irlij jil}i$W,q*&

]
for

if
t

PalA Structure Using.C

famnl =i_omn- >naYf..-.'-;
temp- >nexL=Lemp1 -)next;
fraa(Famnl \ .
!!vv\LvrrLyf/,

return list;

i
printf ("\nElement not f ound") ,'

getch () ;
return list;

]
/*x******************** SEARCH **********************/
1nt searcn (NUUI; * r1st, r nt rrum,
{

NODE* temp;
int- i

for (i=1, temp=list; temp ! =NULL; temp=Lemp >next, i**)
if (temP-)data=-num)

return 1;
return - 1;

i
/******************* MAfN FUNCTION *******************f
void main ()

{
NODE * fist=NULL;
int choice, n, pos;

do
t

prinLf ("\n1: CREATE") ;

printf ("\n2 : fNSERT") ;
printf (" \n3 : DELETE BY NUMBER") ;
pr intf (" \n4 : DELETE BY POSITION") ;
printf ("\n5: SEARCH") ;
prinLI ("\n6 : DISPLAY") ;
printf ("\n7: EXIT");
prinlf("\nEnter your choice :");
scanf ("Ud't, achoice) ;
switch (choice)
{

case 1 :

list=createf ist (list) ;

br eak;
case 2:

printf("\nEnter the element and position :");
scanf ('i %d%d" , &n, &pos) ;
list = insert(fist, n, pos);
display (list);
break;

Lirnked List

case 3:
printf ("\nEnter the efement :,,) ;
scanf("8d",&n);
list = del_eteval (list , n) ;
display (list);
br eak;

case 4:
printf("\nEnter the position :");
scanf ("?dr', &pos) ;
list = deletepos(1ist, pos),
display (list) ;
break;

-aqa q.

printf(,,\nEnter the efement to be searched :");
scanf (tt 8dt' , &n) ;
pos = search(list, n);
if (pos== - r)

pr intf (" \nEl-ement not f ound,') ;
el-se

print,f (',\nElement found at position %d", pos) ;
br eak;

-aca A.

display (list) ;
br eak;

] /* end switch "/getch () ;
) while (choice t=7| ;

getch () ;

5-6 Gomputation of Length of a singly Linked List

The length of a linked list is the number of nodes in the list. We can count them by traversing the list
from the first node to the last node of the list. The display method seen above can be slightly
modified so that we can count the nodes.

Algorithm
l. Start

2. slist is the pointer to the first node of the list.
3. if slist:: NLILL

if--ltut

i:;iilij!;i:ii:iit

Display *Empty List"

Go to l0
4. temp is a temporary pointer for traversal.

5. Initialize count to 0.

6. Make temp point to the first node i.e. tempslist.

7. If temp I NULL

Increment count.

Move temp to the next node i.e. temfiemp->next.

8. Repeat step 7 as long as temp I NULL.

9. Refurn count.

10. Stop.

Function: Length of a List
int length (NODE * sl-ist)
{

NODE * temp = slisL ,'

irtt count = 0;

while (temp != NULL)
{

count++;
temP = tem' -) next;

]
ral-rrrn -^rrnf '

]

/* store address of first node in temp */

/*move temp to the next node */

This function can also be written as a recursive firnction:

Recursive Function 1: Length of List

int rec_length(NODE * slist)
{
NODE*temp=s1ist;

static int count,'
if(temp != NULL)
t

count++,'
rec_length(temp -+ next) ;

]
return count;
]

Linked Lisl

Another way of writing the recursive function is given below.

Recarsive Function 2: Length of List

int rec_l-ength(NODE * slist)
i
NODE*temp=s1ist;

if (temp == NULL)
return 0;

return 1 + rec_length(temp->next);
i

Doubly Linked List

In a singly linked list, each node contains one pointer, which points
to the next node. Thus, traversal is possible only in one direction.

A doubly linked list is a linked list in which each node contains two
links - one pointing to the previous node and one pointing to the
next node.

prev info next

The node structure will be

typedef struct node
{
int. data;
q'|- Trrct nnrla *nrorz *navt- .

] xonp;

Example

Advantages

1. Traversal in both directions is possible.
2. Operations like insertion, deletion, searching can be efficiently done.

ffi
node

Oct.2OO9 - 4M

Explain Doubly Linked
List in detail. How it

fi,tfgns
tronr Singly Linked

List.

Oot{5,Apr.15 - 4M
What is doubly linked
list? Explain its node
strueture.

X 10 __ffi 20 +- ----i----+-) 30 X

Disadvantage

Extra.storage is needed for the pointers.

Creating a doubly linked list: This is the same as creating

every node has to be linked using two pointers - prev and next.

Fanction

NODE * create]ist (NODE *dlist)
{
NODEPTR temp, newnode,
int i, n
printf ("How many nodes:");
scanf ('Zd', &n) ,'

for (i=1;11=n;f++)
{

newnode = NODEALLOC;

newnode -+ next = newnode -) prev = NULL;
print,f ("\n Enter t.he element: ") ;
scanf ("ta", &newnode -+ data) ;

if (d1i-st == NULL)
dlist=temp=newnode;

el-se
{

temp -+ next = newnode;
newnode-) prev = temp;
temp = newnodes;

]
]
return dlist;
l

Inserting node at the beginning

9Jsl--

newnode

newnode -+next: dlist;
dlist -+prev: newnode;

dlist : newnode

a singly linked list except that

2.

t

Dbta Strucfure Using q

3. Inserting a node at the end

temp + next: newnode;

newnode -+ prev: temp;

Inserting a node in between4.

).

newnode -+ next: temp -> next;
temp -+ next -+ prev: newnode;

temp -+ next: newnode;

newnode -) prev: temp;

Deleting the first node

dtist.

temp + prev -+ next: temp -+ next;
temp -+ next -) prev: temp --+ prev;
free(temp);

For simplicity of operations, it is preferable to keep an extra node called ,header, node at the
beginning of the list. The following program illustrates the various operations on a doubly linked list,
which contains an additional node at the beginning of the list.

Unked List

temp

newnode

temp

Apr.11, Oct.10 - 4M
Write a function to delete
a node from Doubly
Linked List.

Bata-,$tructure,q6-!ng€
Unked List

EJ*
/*** 1i"6 is an empty node at the beginntng **y
#include <stdio.h>
typedef struct node
{

rnt data;
strucL node *next,*prev;

i uole;
#define NODEALLOC (NODE *)mal_foc (sizeof (NODE))

/****x******** CREATE LIST *************** **x*** /void create (NODE *l-ist)
{

int i,n;
NODE *newnode, *temp=1ist

;
pr intf (', \nHow many nodes : ") ;
scanf (r' %d" , &n) ;
for (i=1;i(=n;i++)
{

newnode=NODEALLOC;
scanf ("?d", &newnode - >data) ;
newnode-)next=NULL;
temp -)next=newnode;
newnode-)prev=temp;
temp=newnode;

j
]
void insert(NoDE *Iist, int n, int. pos)
i

NODE *temp=list, *newnode, *temp1 ;rnt i;
newnode = NODEALLOC;
newnode - >data=n;
newnode-)next=NULL;
for (i=1; (i<pos) && (temp->nextt =NULL) ;i*+)

temp= temp - > next ;
templ=temp-)next;
newnode-)next=temp1;
templ -)pr ev=newnode,.
temp- >next=newnode;
newnode-)prev=temp;

id display (NODE 'tl_ist)

NODE *temp;
for (5qrnp=list -)next,. temp | =NULL; temp=remp_ >next)

Fq
printf (r'8d\t", temp- >data) ;

]
void delete(NODE *IisE, int Pos)
t

NODE *t.emp, *temp1, *temP2;
int i;
/** Move temp to the node
for (i=1,temp=l,ist; (i< Pos)

LemP=Lsmt -)next;
if (temp==NULL)

i
printf ("Position Out of
return;

i

Lo be deleted **** f
&& (temp ! =NULL) ; i++)

r:nnall \ '!quYv / ,

Lin*ed Ltst

templ=tremp- >next;
temp2 = templ -)next ;

temp- >next=temp2;
temp2 - >prev=temp;
free (temp1) ;

]
void rnain ()

{
NODE *l-ist;
int n,pos, choice;
list = NODEALLOC;
tist->next = list->Prev =NULL;
do
t

nrintf

nrintf

nrinl-f

nrin1-f

nrinl-f

nrinl-f

scanf (

switch
f

("\n1: Create") ;
("\n2: Insert");

" \n3 : Def ete'r) ;
" \n4 : DisPIaY")
,'\n5: Exit");
rl \ n\ nE'nf aY \/nrrr

\rr \1rllruvt J v*-

"?d", &choice) ;
(choice)

^l-'nina
.rr) '

case 1:
create (list) ;

br eak;
case 2:

printf("\nEnter the element and position ");
scanf ("8d%d", &n, &Pos) ;

insert(list,n,Pos);
display (list) ;

break;
case 3 :

printf ("\nEnter the Position ") ;

Pata Structurp,Using.s

scanf ("?d", &pos) ;
delete (list,pos) ;
display (tisr) ;
break;

case 4:
display (list) ;
break;

i
i whlle (choice ! =5) ;

getch () ;
]

Gircular Linked List

A circular list is different from a linear list because the last node
points to the first node.

Using a circular list, we can traverse the list starting from any node to any other node. The insertion.
deletion and display operations can be performed in a similar manner as for a singly or doubly linked
list.

The only point to remember is that in a circular list, there is no NULL at the end of the list. The last
node points to the first node.

Hence the list termination condition will be different.

We shall see the functions to perform operations like create, traverse, insert and delete on a singly
circular linked list.

Creation

The steps in creation of a circular list are
1. clist = NULL

2. Add 10
clist = newnode

newnode ---l next = clist

temP = q1;t1

temp -+ next = newngde

newnode -| next = clist
3. Add 20

Linked List

Apr.l1, Oct.l0 - 2M

Explain Singly Circular
Linked List.

r _-tL'l ro I tlrtl
newnode

clistffi'111__fi4_ts
clist newnode
temp

lJ, ,,i,i Linhsd LFt

NODE* create (NoDE* clist)
{

NODE* newnode, * temp = cl-ist;
char ans;
do
i

newnode = NODEALLOC;
nrintf ("\n Flnler the value t");
scanf ("2d", &newnode -+ data) ;

if (clist =: NULL)

{

cfist=temp=newnode;
newnode -+ next = clist;

]
e1 se
t

temp -+ next = newnode; /* Link newnode

newnode -+ next = cl-ist ;

temp = newnode ;

i
print.f ("\n Any more nodes ?") ;
ans = getcharO;

] while(ans == 'y');
return (c1ist) ;

]

Traversal
void display (NoDE * clist)
i

NODE*temp=clist;
if (clist == NULL)

t
printf ("List is empty") ;

return,']
do
{

nrinff (il%A \tn fomn-)d:t:)}/! rrru! \ os \ u

temP= temP -) next ;

] while (temp t= cfist);

2

Octz01* 4M
Write a function to create
and display circular
linked list.

Oct.2O12-4M
Write the Junction to
insert node at the
beginning of the Circular
Singly Linked List.
Aqr.2O7O- 4M
WritgaCprogramto
create node in circular
linked list.

,..,,.

Insertion
NoDE * insert (NODE * cl_ist , int n , int pos)
t

NODE * temp = cfist, *newnode;
newnode = NODEALLOC;
newnode-)data = n;
if (pos == r)
{

/** I'tlove temp to last node *,/for (temp = cl-ist; temp ->next != clist; temp= temp-)next);newnode->next : clist;
temp->next = newnode;
clist = newnode;
return cfist .

]
for(i=1; i<pos-1 && temp->next I=clist; t++)temp = temp-)next;
newnode-)next = temp-)next;
temp-)next=newnode;
return clist;

]

Deletion
E * delete (NODE * clist , int pos)

NODE * temp = cl-ist, *temp1;

if (pos == 1)
{

/** Move temp to fast nodefor (temp = cfist; temp _

templ=cIist;
clist = clist -> next,.
temp->next = cfist;
free (tempr);
return cfist;

]

>next != clist; temp= temp-)next);

for (i=1; i<pos-1 && temp->next ! =cl-ist ; t++)temp = temp-)next;
if(i < pos -1)

{
printf (,,position out of range,,) ,.return clist;

]
templ = temp->nexr;
temp->next = templ-)next;
free (temp1)

,'

return cl-ist,'

Linked Li$t
Bata:Sti{r iire,Uglllg.e

Solved ExamPles

What is a Doubly Linked List? Write a 'C' program

add new node at the end of a Doubly Linked List'
to

24,6,7a12,60,15

Solution
#include(stdio. h>
#include(conio. h)
#incfude(a1foc.h)
define NULL 0

typedef struct list
t

int data;
struct list *next;
struct lisL *Prev;

] node;
node *head = NULL;
node *Prev : NULL;

node* create-node ()

{
node *new1;
newl = ma11oc (sizeof (node)
printf ("\nEnter data: ") ;

scanf ("%d", &new1 - >data) ;

newl->next = NULL;
newl->Prev = NULL;
return(new1);

);

l
void add ()

{

int insdata;
node *new1,*temP;
pi i"tf (" \nEnter data after which to inser t : ") ;

scanf ("%d", &insdata) ;

t-emp = head;
while(temp != NULL)
{

(temp-)data insdata)if
{

newl -) next
temP - >next
return;

]
efse
temp = temp -

newl = create _node () ;

temp -)next;
newl;

>next;

.1 lll,

void display ()

t
node *temp;
temp = head;
while(temp != NULL)
i

pr intf (,'\nBd,' , temp -)data)temp : temp-)next;
]

]
void main ()

i
int ch, ch1, x;
cf rscr O;
do
t

printf ("\nMENU,,);
printf ("\nl-.create a node\n2.Add

node\n3 . Display\n4 . exit',) ;printf ("\nEnter choice") ;scanf (" %d'r, &ch) ;
swi tch (ch)
{

case 7: head : create_nodeO;
br eak,

case 2: printf("\n Add a node,,),.
addO;
br eak ;'case 3: displayO;
br eak,'

case 4: exit(0);
]
printf (,'\n\n");

]while(ch t= a);
gerch () ;
]

Solufion
#include<siOio. tr>

l#include<maf loc . h)
struct node
{ int info;

struct node *link;
] *start.,'

id main ()

lil

2. Write a 6C' program to reverse a Singty Circular Linked
List.

$
int i, n,ltem;
s tar t =NULL ;
printf("How many nodes you
scanf ("%d", an) ;
for (i=o;i(n;i++)
{

ny.i nf f / ilE-nr. a7 the itemy! f rru! \ !f rLv!

scanf ("?d", &item) ;
create_list (item) ;

]

want : ");

?d : ",i+1)

nrinff("Tnitiallv fhe l inked list is :\n");
display () ;
reverse (J ;
prinlf("Linked fist after reversing is :\n");
display () ;

] /*End of main () */
void create_list (int num)
t

struct node *q, *tmp;
tmp= maIloc (sj-zeof (struct node)) ;
f mh- \'i nf n=nrrm 'vttty /

tmp - > link=NULL;
if (start==NULL)

q1-^vl-=l_mn.

ef se
{ q:start;

while (q'>1ink ! =NULL)
g=q- >link;
q- >1ink:tmp;

]
]/*Fn.l af araato liStO */)/
\r^r d dr cn l^\/ | I,,4J \ /

{
struct node *q;
if (start == NULL)
{

printf ("List is empty\n") ;

return;

q:start;
whil-e (q !=NULL)
i

printf ("%d ", q- >info) ;

q=q- > link;
]

nr i nf f / r \ n r) .
\ \rr / ,

] /*End of display O * /
void reverse ()

Eink€dtist

Ditar$ir,{Icture {Jslfrg Q

i
struct node *p1 , *p2, *p3;
if (start->link==NULL) /xonly one element*/
return,'
p1=start;
p2=p1 - >fink;
p3=p2->1ink;
p1->1ink=NULL;
p2 - > link=p1;
while (p3 I =NULL)

{ pr=p2;
p2=p3;
p3=p3 -)1ink;
p2'>l-1nk=p1;

]
start=p2;

) /*End of reverse () * /

Write a program to add a node in a Doubly Linked List at
the beginning and at the end.

Solution
#include<stdio . h)
#lnclude<malfoc. h>
struct node /* sLructure to represent a node
{

Linted U€t

3.

of doubly Iinked list*/
struct node *prev;
int info;
struct node *next;

l *start;
void mainO /* main function *,/
{

rnt choice, n ,m, i;
start=NULL; /*initialize header node to NULL *,/
while (1)
{

Printf ("1. Create List\n"),.
printf ("2.Add node at begining\n") ;printf("3.Add node at the end. of fist \n");
Prlntf ("4 .Dlsplay\n") ;
prrntf (,'5 . exit\n") ;
Printf("Enter your choice : ");
scanf (I' U d" , Achoice) ;
switch (choice)
{
case 1: printf("How many nodes you want : ");

scanf ('r ?d" , &n) ;

:;,1!i!!j:i:ji jlti:fi.

for (i=o ; i (n; i++)

t
nr i ntf {rrEnter: the element: tt) ;y! rrru! \ !r^vv+

scanf ("8d", &m) ;

create_list (m) ;
]
br eak;

a;aa).nr.inf f /"pnter the element: tt) ;9qD9 z 'PrfrrLr \ !,

scanf ("?drr, &m) i
addatbeg (m) ;

break;
case 3 : pr intf (" Enter the el-ement :

scanf (r' 8d'r , am) ;

addatend (m) ;

br eak;
case 4: display () ;

break;
case 5: exit () ;

d.ef ault : pr lntf ("Wrong choice\n") ;
| /*End of switch*/
j /*nnd of while*/

\ / *End of mainO */
create-l-ist (int num) /*ceraLe function

node */
{

il).

to create a sang-Le

struct node *q, *t*P;
tmp= ^.ttoc

(sizeof (struct node)) ;
tmp- >info=num;
tmp- >next=NULL;
if (start==NULL)
{

tmp-)prev=NULL;
start-)Prev=tmP;
s t.ar t= tmp;

]
else
t

q=start;
whife (q-)next ! =NULL)

q=q_ >next;
q- >next=tmp;
tmp- >prev=q;

]
\ /"End of create-l-ist O */
addatbeg(int num) /*function to add node at the beginning of

the list r'/
{

struct node *tmp;

Pard,Strrr$ r

tmp=ma11oc (sizeof (struct node)) ;
tmp-)prev=NULL;
tmp - > info=num;
tmp->next=start;
s tar t - >pr ev= tmp,'
start=tmp;

/*Pnd of addatbeS O * /
addatend(int num)
t

struct node *tmp, *q;
int i;
tmp=.-1foc (sizeof (struct node)
tmp -) info=num;
tmp- >nexL=NULL;
tmp- >prev=NULL;
q=sLart;
while (q- >next, != NULL)

q=q-)next;
q-)next=tmp;
tmp -)prev=q;

);

/*nnd of addatendO */
ispJ-ay O /*display function to print al-l

struct. node *q;
if (start==NULL)
{ printf ("List is empty\n") ;

r eturn;
]
q=start,.
printf ("List is
whife (q ! =NULL)
{ printf (',8d ",

q:q->next;
]
pr int.f (,'\n,' , ,.

*End of display ()

nodes in the list */

.,.l Unkgdqist

Write a function
linked list.

: \n") ;

q- >info) ;

to add node at given position in singly

*insert (node *head, int x, int kev)

ode *p, *q;
= (node*)ma11oc (sizeof (node)) ;

P-+data=x;
if (key==-1)

{ p-+next=head;
head=p;

]
else

{
q=head;

while (key !=q-+data
q=q_>nexr;
if (q ! =NULL)

{ p*>next=q->next;
q-+next=P;

]
i
return (head) ;

]

&& ql= NULL)

WPUouestions
1

2.
a
J.

4.

5.

6.

l.
2.

3.

4.

What is use of "typedef'keyword?

What are the advantages of array over linked list?

What is linked list structure?

What is Linked List? State its types.

Explain Singly Circular Linked List.

What do you mean by Traversing a Linked List?

Write a function to create and display circular linked list.

What are the drawbacks of sequential storage?

Write a recursive function for erasing linked list.

Write a function to display circular linked list in reverse

order.

IOcL2015- 2Ml

lOct.2015- ZMl

lAor.2015 - 2Ml

lAor.2012 - 2Ml

lApr.l1. Oct.10 - 2Ml

IOc|.2OOg - 2Ml

1Oct2O15- 4Ml

lOct.2015- 4Ml

lOcL2O15- 4Ml

IOct.15.Apr.15 - 4Ml

lApr.2010 - 4Ml

lAor.2010 - 4Ml

lOct.2O1O - 4Ml

lOct.2009 - 4Ml

lOct.2009 - 4Ml

Linkad Liet

25. Write a 'C' program to remove first node of singly linked list

and insert it at the end of a list.

26. Write a 'C' program to create a node in doubly linked list.

27. Write a function to delete a node from Doubly Linked List.

28. Explain with suitable example how data is inserted into a
linked list at beginning and at end'

29. Explain Doubly Linked List in detail. How it differs from
Singly Linked List

()"
utst0tl

i7.
8.

9.

10.

11.

12.

13.

Write a function to merge given two singly linked lists.

Write a frrnction to remove last node of singly linked list and
add it at the beginning.

What is doubly circular linked list? Explain its node structure.

Write a function to merge given two singly linked lists.

Write a function to display circular linked list in reverse order.

Write a function to remove given node from singly linked list
and add it at the end of list.

Write a function to add node at first position in singly linked
list.

Write a function to create and display circular doubly linked
list.

Write a function to add node at given position in singly linked
list.

Write a function to create and display doubly linked list.

Write a 'C' Program to search given element into the Singly
Linked List.

Write the function to insert node at the beginning of the
Circular Singly Linked List.

Write a function to Insert Node at the specified position in
Doubly Linked List.

:!:::ii;ii:iiij,:;,:

lOct.2015- 4Ml

lAor.2015 - 4Ml

lApr.2015- 4Ml

lAor.2015- 4Ml

1Nr.2015- 4Ml

IAor.2O15 - 4Ml

1Aplr.2015- 4Ml

lOct2014 - 4Ml

1Oct2O14- 4Ml

1Oct.2O14 - 4Ml

lOct.2012 - 4Ml

lOct2012- 4Ml

lOct.2012- 4Ml

lAor.2012 - 4Ml

lAor.2012- 4Ml

IAor.2012- 4Ml

lApr.2o12- 4Ml

IApr.2011 - 4Ml

IAor.2O11 - 4Ml

IAor.2O10 - 4Ml

16.

18. What are the advantages of a Linked List over an Anay?

19. Write the function to insert and delete a Mode in the beginning
of a Singly Linked List.

Write a C program to create and display Singly Circular
Linked List.

l. What is a Doubly Linked List? Write a 'C' program to add new
node at the end of a Doubly Linked List. 24,6,75,12,60, 15

Explain types of Link Lists.

Write a frrnction to delete a node from doubly linked list.

Write a C program to create node in circular linked list.

,g ,,. S#.
Linked Li$

25. Write a .c' program to remove first node of singly linked list

and insert it at the end of a list.

26. Write a ,c, program to create a node in doubly linked list.
I

27. Write a function to delete a node from Doubly Linked List.
I

Zg. Explain with suitable example how data is inserted into al

linked list at beginning and at end.

29. Explain Doubly Linked List in detail' How it differs from

Singly Linked List

()"
ut$t0tl

lAor.2010 - 4Ml

lNr.2O1O - 4Ml

lOct2010 - 4Ml

IOct2OO9 - 4Ml

IOct-2009 - 4Ml

QAafror 4

SrncK AruD
OUEUE

1. lntroduction

Data structures play a very crucial role in computer science. One of the most important data structure
is the stack. In this chapter we will study this data structure, its implementation and see why it plays
such an important role in Computer Science.

2. Definition of a Stack

A stack is an ordered collection of items into which items may be inserted and deleted from one end
called the top of the stack. The stack operates in a LIFO (Last In First Out) miilrner i.e. the
element which is put in Last is the First to come out.

Example

A common example is a pile of plates kept one above the other. Only the topmost plate can be taken
and any new plate has to be put at the top.

ffi
This is an example of a
have been put into it.

stack. The following diagram illustrates a stack after items

:$taekaM'Oueue

A,B,CandD

Top -+

When we want to remove an item from stack, D will be the first to be removed and the top points to

item C.

rop-+ f c ---l

[B__l
f-A I

Stack after D is removed

A new element E will be added above C.

Top -+

Adding E to the stack

Thus, the stack is dynamic in nature i.e. its size can increase or shrink during runtime.

3. Primitive Operations on Stack

There are primitive operations that can be performed on a stack

l. Create: Creates a new stack. This operation creates a new stack which is empty.

2. Push: Adds an element to the stack' The push operation

inserts a new element at the top of the stack. Top now points

to this new element.

Data Struoture Using S

3. Pop: Removing an element from the stack. The pop operation
removes the topmost element from the stack thereby reducing
the size of the stack by l. The element below it now becomes
the topmost element.

4. Isempty: Checks whether a stack is empty. This operation
returns TRUE if the stack is empty and False otherwise. This
is required for the pop operation because we cannot pop from
an empty stack.

lmplementation of a stack

A stack can be implemented in two ways:

Static

Dynamic

4.1 Static lmplementation of Stack

Since the stack is an ordered list of items, we can implement it using a familiar and similar data

structure i.e. arrays. The array elements have sequential representation which is required for a stack
also. However, there are fundamental differences between a stack and an array. Some differences
are as follows:

Array Stack
1 Any element of an arrav can be accessed. Onlv the topmost element can be accessed.

2.
An array essentially contains homogenous
elements. A stack may contain diverse elements

3.
An array is a static data structure i.e. its size
remains constant.

A stack is a dynamic data structure i.e. its size
shrinks and grows as elements are pushed and
popped.

4.
There is an upper limit on the size of the array,
which is specified durinq declaration.

Logically, a stack can grow to any size.

if we are implementing a stack using an Array, there will be limitations imposed on the stack
to the restrictions on the arrav.

important limitation will be on the stack size. Since an array can be of a fixed size only, the
implemented using anafiay will also have an upper bound.

$tack and Queue

2

Oct2010 - 2M

What is a Stack? Discuss
Operations Performed on
Stack.

Oct.2009 - 2M
Explain different
operations performed on
a Stack.

Pi{tq.,Sr4@,|s:

We will now also have to check if the upper bound has been reached before an element is Pushec
into the stack. Thus, one more operation i.e. Isfull will have to be performed on the stack. Thir
operations gives TRUE if the upper limit has been reached i.e. the stack is full.

We shall also define a new operation called 'Initstack' which will initialize the top to -l to indicate
an initially empty stack.

4.2 Declarations and Functions

Declaring a Stack

A stack to be implemented using an array will require

l. An array of a fixed size

2. An integer called top which stores the index or position of the topmost element.

We can use a structure for the above purpose.

#define MAX 100
#define EMPTY -1
#define FULL MAX-1
struct stack
{

int, top;
int items [laAX] ;

];
This declaration only specifies the template. The actual stack can be declared as

struct stack s1;
TIci nc l- rznorlof

The typedef can be used to create a new data type called STACK. This can be done as

typedef struct
i

int top;
inL it,ems []aAXl ;

i STACK;

The declaration

STACK sI,s2.;

declares sl and s2 as two stack variables.

peF:$try.p.trxb.ru,$.i- stack ard QGue

Stack with objects of different data types.

Although an array allows elements only of the same data type, a stack can be designed to store

elements of multiple data types. A union can be used for this purpose as shown.

#define INT 1

#define FLOAT 2

++clEIlNE UHAK J
struct element_type
{ i nl- al af rrna.

union
{

int intval-ue;
float floatvalue;
char charval-ue;

] efement;
\;
struct stack
{ int top;

struct element type items [MAX] ;
];
Depending upon the value stored in eletype, either an integer, float or character value will be stored

in the union.

4.3

1.

Operations on the Stack

Initialize a stack: When a stack variable is declared, the integer top has to be initialized to
indicate an empty stack.

Since we are using anarray, the first element will occupyposition 0. Hence, to indicate an

empty stack, top has to be initialized to -1. The function will be written as

void initstack(STACK *ps)

{ ps -+ t.op : *1;i

calling thefunction

initstack (&sr) ;

Checking whether stack is empfy: An empty stack can be tested from the value contained in
top. If top contains -1, it indicates an empty stack.

int isempty(srACK *ps)
{

3.

q.ahi$ftftI.
,

g'tgl;8

ral-rrrn lnqruus!rr \Yv -) top == EMPTY);
J

calling thefunction
if (isempty (as1)

Chect<ing for a Full Stack If the value of top reaches the maximum array index i.e. MAX-I,
no more elements can be pushed into the stack.

int isfull (STACK *ps)

{

return(ps + top == FULL);

]

calling thefunction
if (isfull (es1))

The Push Operation: An element can be pushed into the stack only if it is not FULL. In such

a case, the top has to be incremented first and the element has to be put in this position.

void push(STACK *ps,int n)
{
J-I \IbIUf f \pD,/,/

{ printf ("\n stack overf l-ow") ;
r eturn;
]

el-se
{ ++ps -+ top;
ps + items [ps + top] = n;
]

i
Calling the function
push(&s1,n);

The statements in the else part can also be written as

ps -+ items [++(ps -+ toP)] : n;
The Pop Operation: An element can be removed from the stack if it is not empty. The

topmost element can be removed after which top has to be decremented.

i n f nnn f S'f af-K *OS)fIIu vvy \vf arvr\ !

{

return(ps + item [Ps + toP--]);
I

4.

f,.

.,

calling thefunction
if (isempty (&s1))

pr intf ("\n Stack Empty,,) ;

el-se
printf ("%d", pop (&s1)) ;

We shall now write a simple menu driven program to implement
and declarations as written above.

/* Illustrate implementation of stack using Anay */
main ()

i
STACK s1;
int ch,n;
do

i
printf ("\n1: PUSH") ;
nzinrf /,,\hr. r\ \raa . .)oP,') ;
printf("\n3: EXIT");
pr i ntf ("\n\n Enter your option :',) ;
scanf ('s"d', &ch) ;

switch (ch) {

case 1 : printf ("Enter the dat.a to be pushed,,) ;
scanf ('2d", &n) ,

Push(&s1,n);
br eak;

case 2 :.
if (isempty (&s1))

printf ("\n Stack is empty,,) ;

$tac* and Oueue

stack usine the functions

el se
printf("\n The popped value is %d,,, pop (asf));
br eak;

case 3 : printf ("\n Exiting,');
i /* end of switch */

] whife (ch ! =3) ;
j /* end of main *,/

Output

1: PUSH

2: POP

3: EXIT
Enter your option: 2
Ql- ack i < amnl- rr4 v vrrrP LJ

l-: PUSH

2t POP

pat*rsi.!i4ilr9JJ,F

3 :' EXIT
F'nt ar rrnrrr nnf t on: 1

,Yvs! vYv+v

Enter the data to be Pushed: 20

Stack afld Queue

1 r PUSH

2: POP

3: EXIT
Eni-67 \/Arrr

The popped
nnl-inn. ?vyu!vrri 3

value is 20

1: PUSH

2: POP

3: EXIT
Fnf ar rrnrrr nnf inn: 3fvs! vYv4v

nxiting...

Another example of stack usage can be seen in the reversing of a string. Each character of the string

is pushed into a stack and after all have been pushed, the characters are popped out one by one. This

will give us the characters in the reversed order.

The stack has to store characters and hence the array has to be declared oftype char'

/* Reversing a string using a stack */

main ()

{ STACK s;
char str [20] ;
int i = o; initstack(as);
printf("\n Enter the string t");
gets (str) ;

while (str [i] t ='\o') ;

ipush(as,str Ii]);
l++;

]

whife (! isempty (&s))

{ str [i] = pop(as);
i++,'

]
str [i] = '\0' ;
printf("\n The reversed string is z");
puts (str) ;
]

Output

Enter the string: ComPuler
The reversed string ls: retuPmoC

t

4.4 Dynamic Implementation of stack

e have seen how a stack can be represented using sequential representation. However, in that
, there is a limitation on the size of the array. Moreover. if less elements are stored. memorv

be wasted.

the linked or ganization,

The stack can grow to any size,

We need not have prior knowledge of the number of elements,

When an element is popped, the memory can be freed. Thus
memory is not unnecessarily occupied.

Since random access to any element is not required in a stack,
the linked representation is preferred over the sequential
orsanization.

o represent a stack dynamically, we will have to allocate memory whenever a new element has to
pushed into the stack and free memory when an element is popped.

stack will have to be maintained as 'linked list'. For this purpose, we will have to link the stack
ements to each other. This can be done by defining a 'Node' structure as follows.

Lruct node

int element;
struct node *next;

ince we have to allocate and deallocate memory dynamically, we will have to use pointers. Hence
will defined as a pointer to the first node of the list.

in creating a Dynamic Stack

top:NULL

Push l0

Apr.ll, OeL10 - 4M
Explain dynamic
representation of Slack.

Oct.2AOg - 4M
Explain static and
dynamic representation
of Stack.

Datalff $t&k and Queue

3. Push 20

too

4. Pop

I

top-----'

As seen from above, every new element pushed will be added to the beginning of the list, and will bc

pointed to by top.

The various functions will be as follows:

1. Initializing the stack
void initstack o
{

top = NULL;

i

2. Push
rrnid nrr<h/inf n\

{

struct node * newnode;
newnode = (struct node *) malloc (sizeof (struct node)) ;
newnode -+ efement = n;
newnode -) next = top;
I nn - nar^rnnaia .
""v

]

3. Checking an empty condition
i '.f -F-^l-^-^F-, / \rrlL DLaLNVTUULy \ /

{
return(top -- NULL);

i

4. Pop
int pop ()

{ struct node*temp,'
int n;
Eemp - roP ;

n : top -+ el-ement;
top = top+ next;

tr4f, !,
'ias,c

free (temp) ;
return (n) ;

Sinc-e .we are using dynamic allocation, the stack can grow to any size. Hence, the stackfullcondition will not arise.

Note: For the above functions, top is assumed to be a global pointer.
Program to implement a stack dynamically.
struct node
{

int efement;
struct node* next,.

) * top ; /* top is a g1oba1 pointers*,/
main ()

t
int ch,n;
do

{ printf ("\n1 : pUSH,,) ;
printf (,,\n2 : pOp,,) ;
prinLf ("\n3 : EXIT,,) ;
printf '("\n\n Enter your option :,,) ;
scanf ("2d", &ch) ;
switch (ch)

{ case 1:printf
scanf
push (n) ;
break;

case 2: if (isempty O)

printf (,,stack underf low,,) ;
ef se

prrntf ("The popped value is ?d,,, pop O) ;
]

iwhile(chl=3);

3

&rra ryr-l1 - zM
WnatareCIe
Applhatiore of Stack?

&L?011 - 4M
What is stactt Discuss
various aPPlicatkms of
stack.

5. Applications of Stack

Stacks are widely used in operating systems, by compiler and by

applications. Some of the applications are:

1. Subroutine calls, Recursion

2. IntemrPt handling

3. lnterconversion between lnfix, Postfix and hefix expressions'

4. Matching Parentheses in an expression

5.{ Recursion

A function which calls itself is called a recursive function'

Thecompilerusesastacktostorethevaluesbeforethenextfunction
call is given.

After the last function call is executed, the compiler pops values from the stack to resume execution

of the previous function call.

As an example,let us consider the recursive function to calculate the factorial of a number'

unsigned tong int fact (int n)

{ if (n<=1)
return 1;

else
return (n*fact (n-1) ;

]

Sequence of function calls given for n:4 are

n=3 n=2 n=2n=4
3! =? 2l =?

1!= 1

retum 1

from main
4!=4x3!

=4x6
3l = 3 x2t.

=3 x2
lt =l7f t

=2x I

1!

24

Each time the fact function is called, the value of 'n' is pushed into the staclg so that when

returns from the called function, the value of 'n' can be multiplied to the returned value'

D.4q:Strl$!r!e,.,u€ing$

After the last function call finishes execution and a value is retumed, the value of n
the stack and multiplied with the returned value. This process continues till the first
reached.

iiiter,

is popped from
function call is

A similar strategy is used when control has to be transferred to a subroutine or to process the
intemrpt subroutine. In order that the execution of the calling routine is resumed, the values have to
be pushed onto a stack and popped after the execution ofthe subroutine is over.

5.2 Polish and Reverse polish Notations

An expression consists of operators and operands. The operands may be identifiers and constants
and operators are symbols representing various operations. An expression can be written in three
formats depending upon the placement of operators with respect to the operands.

Infix

In the infix notation the operand is placed between the operands. Example A + B. This operator is
applied to the two operands surrounding it. Hence it,may be necessary toexplicitly specifylhe order
of operations by using parentheses.

Example

If , we want to divide a number A by the sum of numbers B and C, the expression will be
A/B + C. However, this will be wrong since A/B will be performed first. Hence the correct
expression will be A / (B + C).

This problem of ambiguity can be removed by using two non-parenthesized formats called prefix
and postfix forms.

Prefix or Polish

In the prefix form, the operator precedes the two operands

Example +AB

Postfix or Polish

In this format, the operator follows the operands Example AB+

Converting from lnfix to Prefix and Postfix

lnfix Prefix

1. 4+(B"C) (A+(B'C))
(A+.BC)

+A*BC

Postfix

(A+(B-C))
(A+BC.)
ABC *+

ii. (A+B).(C-D) (A+B).(C-D)) ((A+B). (c:D))
(+AB. (C-D)) (AB+ - (C-D))
(A+B * -Cq) (AB+ * CD-)
*+AB _CD AB + CD - *

The above conversions can also be done by the following steps'

i. Completely parenthesize the infix expression to speciff the order of operations.

ii. Move each operator outside its corresponding left parenthesis (for Prefix) or right parenthesis

(for Postfix)

iii. Remove all parentheses.

Example

Infix (A+B). (C-D)

'{g)'(9-D))
*+AB -CD((AU{gr
AB+CD-*

lmportance of Prefix and Postfix notations

Since they are free from parentheses, their evaluation is simplified. The compiler converts an infix

expression to the postfix format before evaluating it.

Algorithm to Convert an lnfix expression to Postfix

To convert an infix expression to postfix, we will need

l. A string containing the infix expression, which is parenthesized.

2. A stack (opstack) which will store the operators.

3. A string to store the postfix expression.

Algorithm
l. Opstk is the empty stack.

2. Read a character from the infix string.

Postfix

W
3- If it is an operand add it to the postfix string.
4. If it is an operator or opening bracket (add it to the opstk)
5. Ifthe character is closing bracket,

ch = popo
while (opstk
{

add ch to
ch = popo

]

6. Repeat from2 till the infix string does not end.

7. While stack is not empty, pop from stack and add to postfix
string.

8. Stop.

Let us now evaluate this algorithm by taking examples.

L. Infix string -+ (A+B)*C

,'i:{qlF F!il!l!,. ri

l: difiii#f$ff',1"r
(

A A
+ (+
B AB (+

AB+

c AB +C
AB +C*

Infix string (A+B) * (C-D) /E

: St6*ar$fte*rc

is not empty and ch is not' (')

postfix st.ring

&t14,12-ttM
Write an aorirm to
convert lnfti Expression
to Posfifix Expression.

Fqr.2071 - 4M
Explain algorithm to
evatuate iinx to p;tfix
expression.

Octfrl0-4M
Explain algoqrthm to
convert infix expression
to its quivalent postfx
expression.

Irtrflo - eu
Eplain atgorithm to
colvert infi x expression
to lb equivalent postfix
erpqpssion.

((
(((
A A ((
+ ((+
B AB ((+

AB+

(*(
c AB +C ("(

('(-
D AB +CD (*(-

AB +CD - (*
AB+CD-'

I AB +CD - I
E AB +CD - *E I

AB+CD -*E/

Stack and Queue
Fala

Evaluating a Postfix exPression

To evaluate a postfix expression we need.

l. A postfix expression in a string like ab + c*

2. A stackto store the operands (opndstk).

Example

We will analyze the above
(A+B)*(C-D). If the values

result after each iteration will

5.3 lnterconversion between
Expressions

Gonverting an Infix expression to Prefix

Example

Infix ((A+B) *C)

Prefix * +ABC

The algorithm is
l. Opndstk is the emPtY stack.

2. Read a character from the postfix string.

3. j-f it is an operand
push it into the stack

ef se
pop two oPerands from the stack
apply the operator to these two operands

push the result inLo the stack

4. if postfix string has not ended go to 2

5. Pop from stack and disPlaY.

algorithm for the postfix string AB +CD -* (corresponding to infix

ie 5,4,6 and2 iespectively, the contents of the stack operands and

be.

CharaCt6r Opndsft Clnerand I Ooerand 2 result
5 5
4 5.4
+ 9 5 4 9

6 9.6
2 9.6.2

9,4 6 2 4

36 9 4 36

lnfix, Postfix and Prefix

@-2009 - 4M

Explain algorithm to
evaluate postfix
expression.

W
We need:

1. An infix string fully parenthesized

2. A stackto store operators (opst$
3. A stackto store operands (opndstk)

Algorithm
l. Read a character from infix string

2. If it is'(' or operator
nush in onstkyuvrr +rr vys

3. If it is an operand
n"ch .i r .i n nnndct- lztr,UDrr IU Ilt VIJTTUDUN

4. If ')'
while ((ch = pop (opstk)) ! =' (')
{

op2 = pop (opndstk)
op1 = pop (opndstk)
Form an expression as ch op1 op2
Push expression in opndstk

]

5. Repeat from I till infix string does not end.

6. Pop from opndstk and display.

7. stop.

Analysis

Infix string (A+B) *C)

' '*i# ', ', Hrgtxefon,
((

(((

A ((A

+ ((+ A

B A,B

) (+AB +AB

(* +AB

c (* +A B,C

)
*+ABC '+ABC

Datastru4{lqsl$-c Stack and Queue

Gonversion from Prefix to lnfix

Example

Prefix*+ABC
Infix ((A+B) *C)

I(e need:

1. The prefix string

2. A stack to store operators and infix expression.

Algorithm

1. symb is next input character

2. If symb is an operator

Push symb into stack

3. If symb is not operator

expr = symb
while (top of stack contains operand)
i

opnd = pop$;
opr = popo;
expr = parenthesized expression of opnd opr

expr
]
push expr into stack

4. repeat from I till string does not end.

5. Pop from stack and display.

Analysis

Prefixstring*+AB-CD
$tack, Elpr i

+ *+

A "+A A
B ,(A+B) (A+B)

*, (A+B), -
c *,(A+B)

, -, C c
D *, (A+B) (c-D)

((A+B) " (C-D)) ((A+B) - (C-D))

ocr.2011- 4M
Write an algorithm for
prefix to infix conversion
of an expression.

Data Stfuc*ureUsir CI

Conversion from Postfix to Infix

Example

Postfix AB+C*
lnfix ((A+B) * C)

We need:

l. A postfix string

2. A stack to store operands and infix expressions.

Algorithm
l. Symb is next input character

2. If symb is an operand

push symb in stack

3. If symb is not operand

epndl : popO;
opnd2 : popO;
expr : (opnd 2 symb opnd l)
Push expr in stack

4. Continue from I till string does not end

5. Pop from stack and display.

Analysis

Postfix string: AB + CD - +

Evaluating a Prefix Expression

We need:

I A prefix string (pre)

2. A stack to store operators and operands(str)

$tack and Queue

Svmh Stack ExDf'
A A
B
+ *+A A
c .(A+B) (A+B)
D *. (A+B). --,(A+B), -, C c

*, (A+B) (c-D)
((A+B) * (C-D)) ((A+B) " (c-D))

p.ffi
Algorithms

1. stk is the empty stack.

2. Read a character from the prefix string (symb)

3. If symb is an operator

5.

6.

push it into stk

If symb is an operand

iftop of stk contains an operand

opndI : popo
opr : popo
Apply opr to opndl and symb Push result into stk.

else

push symb in stk

Repeat fuom2 until prefix does not end.

If stk is not empty

opnd2 : popo
opr : popo
opndl : popo
result : apply opr to opndl and opnd2.

Push result into stk

Pop from stk and display

Stop

5,4 Matching Parentheses in an expression

An expression containing parentheses will be considered invalid if the parentheses are not balanced.

A Stack can be used to check if they are balanced or NOT.

Example

(a+b) *Cl

{ (a+b) *C

Balanced

Imbalanced

Data Structure Usng C $tact(,aaif rr$ui}

Algorithm
1. Read a character ch from input expression.

2. If it is an opening bracket, push it into the stack.

3. If it is a closing bracket,
if (stack is not empty)

{ ch1 = popo
If ch1 is not the closing bracket of
{ display - parentheses noL balanced
goto 6

ii
el se
display parentheses not bafanced, goto 6

4. repeat from 1 till input expression ends

5. If stack is not empty

display *parentheses not balanced

display - valid expression

6. Stop.

6. Glueue

A queue is another important data structure which finds applications in numerous situations. In this
chapter, we will study the concepts of a queue, the operations and applications of this data structure.

We are all familiar with the concept of a queue in dayto-day situations like queues at a bus stand,

booking office etc. With reference to computers, queues are used for resource scheduling.

7. Definition of a Queue

A queue is an ordered collection of items from which items may be deleted from
(or removed from) one end called the front and into which items may be inserted at the other end

called rear.

ch

Data: Strurf ure.uBitql

The elements are added and deleted in a FIFO (First In First Out) manner.

,$f

Example

The following diagram shows a queue with three elements A,B and
C. A is at the front and C is at the rear.

t
Front

A new element. D will be added at the rear.

t
Front

An element can be deleted only from the front.
queue.

1
Front

be the first to be removed from the

^I
Rear

t
Rear

Thus, A will

t
Rear

2

Oct.2O15 - 4M
What is queue? Explain
its operations in detail.

fgr.zltf - 2M_
_

What is Queue? State
various operations
performed on a Queue.

8. Operations on a Queue

The operations on a queue are on similar lines to those on a stack.

l. Create: Creates a new queue. This operation creates an

empty queue.

2. Add or Insert: Adds an element to the queue. A new element
can be added to the queue at the rear.

3. Delete: Removes an element from the queue. This operation
removes the element, which is at the front of the queue. This
operation can only be performed if the queue is not empty.

The result of an illegal attempt to remove an element from an empty queue is called
underflow.

4. Isempty: Checks whether a queue is empty. This operation returns TRUE if the queue is
empty and FALSE otherwise.

A B c

A B c D

cB D

.,,, 9 $trck ardaueue

9. lmplementation of Queues

Queues can be implemented in two ways:

1. Static using Arrays

2. Dynamic using linked representation

9.{ Static lmplementation of Linear Queues

Logically, there is no limitation on the number of elements in a queue. However, since we are using

an aftay to implement it, there will be an upper limit on its size. Thus, we will have to check for a
queuefull condition before adding any element to the queue.

Declaration

A queue to be implemented using an array will require,

1. An array to store the elements.

2. An integer called front which stores the position of the first (or oldest) element of the queue.

3. An integer called rear which will store the position of the last (or newest) element of the
queue.

The declarations will be

#define MAX 10
#define FULL MAX-1
#define EMPTY -1
struct queue
{ int front , rear;

int items []aAXl ;
l
cl- rlrnl- drrarra d1u Ysvuv 9r /* qf is the actual queue * /

We can also use typedef to create queue as a new data type name.

l-rrnarlaf <l-rrr-fuJ yvvv !

{ int front,Tear;
int items [MAX] ;

iQ;
Q q!,q2; /* d1 anrf a2 :ra fr^rn arrarroq */

/ nL urrv Yuvuvu /

Data$ructure Using C

Operations on the Queue

1. Creating an empty queue: Once we declare a

front and rear values to indicate an empty queue.

void initqueue (Q *pq)

{ pq-+front = pq-+rear = EMPTY;

i
The function will be called as
'i n i rnlar ra / r-ar \r11r uYuv uv \ qY! / t

Checking for an empty queue: A queue will be

same position. For example, if the queue contains
will be

empty when both, front and rear are at the

A, B, and C, the positions of front and rear

2

f
front

rear

After removing the elements A, B and C, front and rear will coincide. Thus, the queue empty
condition can be written as

int isqempty (Q *pq)
i

return(pq-+fronL == pq-)rear) ;

]

3. Checking for a full queue: As we insert elements into the queue, rear gets incremented.

At some stage it will reach the array limit i.e., MAX-I after which no more elements can be

added. Thus. the function can be written as

int isfull (Q *pq)

{ return(pq -+rear == FULL) ;

i

4. Adding an element to the queue: A new element is added at the rear end of the queue.

Since, we have initialized rear to -l the first element should be put at position 0. Thus, rear

should be first incremented and the element should be stored atthatposition.
.'n i A :AAn 1f\ *na i nl- nr rm)vvru quuY \v PYt

{ if (! isf u]l (ps))

pq-+items [++ (pq-+rear)] =num'
ef se

printf("\n Sorry, queue js fuff \n");
]

Calling the function: addq (&q I,n);

stackandQueue I

variable of type Q, we have to initialize the
This can be done bv initializine them to -1.

-1
A B c

Stac& andQseue

5. Deleting an element from the queue: An element has to be deleted from the front. As is the

case for rear, front has to be first incremented (since it has been initialized to -l) and then the

element atthatposition has to be retumed.

int delq (Q *pq)
{

int n
n : pq -+ items [** (pq -+ f ront)] ;
rarllrn n.

i
Before this function is called, the queue empty condition has to be checked for. Calling the

function.
if (isqempty (aqr) ==1)

printf ("Queue empty") ;
e1 se

n = delq(tqr) ;

A simple menu driven program to implement a queue using the declaration and functions

discussed above is as follows.

/+ Illustrates operations on a Linear Queue */

/* Declarations and functions to be written here */
main ()

{

O ga; ,/* Local declaration * /
int choice;
i ni tnrrarra 1f.^1 \f rrr uYuv sv \ *Yr / ,

do
{ printf ("\n1: ADD") ;

printf ("\n2: DELETE") ;
printf("\n3: EXfT");
printf("\n\n Enter your option :");
scanf ('Y"d', achoice) ;

switch (choice)
{

case 1 : printf("\n Enter the data to be added");
scanf ("2d", an) ;

addq(&q1,n) ;

br eak;
case 2 : if (isqempty (eqr))

printf("\n Queue is empty !");
ef se

Data- Struc*ure Usirg C

printf("\n ?d is
break;

case 3 : printf ("\n Exiting
]

] while (choice ! =3) ;

Output
1:ADD
2 : DELETE
3 : EXTT
Fn Far rrnr rr nnr i r1n . IJvur vyLf\

Enter the data to be added 20

1:ADD
2 : DELETE
3 : EXIT
Entpr rrnrrr nnl. i r.;n ; 2J vu! vyur

20 is removed.

1:ADD
2 : DELETE
3 : EXfT
Fnr-ar rrnrrz anfian. 2J vur vyLf
Ottarta ia amhF\rl

1:ADD
2 : DELETE
3 : EXIT
Enf er worrr nnt i nn; 3
Exi ting

rcmorrpd " dola/,t.a1 \\, uefY\qYr/ /,

Stekarrd qugue

9.2 Static lmplementation of Gircular Queue

Just as we implement a stack using a linked list, we can implement a queue in a similar manner.

A queue can be considered as a list in which all insertions are made at one end called the rear and all
deletions from the other end called front.

A queue can be easily represented using a linked list.

The front and rear will be two pointers pointing to the first and last node respectively.

struct node

{ st-ruct node*nexc;
int info;

] * front, *rear;

Dala Structure Uslng C

The various operutions urc illuslratetl halow.

l. Initqucuc

front : rear: NULL

2. Add l0

newnode

3. Add 20

if (front == NULL)

front=rear=newnode

front
rear

rear + next=newnode
rear = newnode

rear '

..ru
front

rear + next=newnode
rear = newnode

Delete

front

temp = 1on1'

front=front +next;
free(temp);

sadvantage of a Linear eueue

e have seen the queue operations earlier. Let us consider the following scenario for a queue with
Klmum slze).

front

rg|--ll;;l tuii-t ru
newnode

4. Add30

temp

ln *-*->lzo
-J au_ ,l uo NULL

'rnn''mnn

Initially, the queue is empty i.e. front and rear are at -1. After the elements A, B, C, D, and E arc

added, the queue will look like

AIBICIDIE

front

If we remove two elements from the queue, we have,

t
rear

rt
front rear

We have two vacant positions at the beginning of the queue but we cannot add new elements

since rear has reached MAX-I which is the queue full condition.

Thus, even if elements are removed from the queue, new elements cannot take their positions.

Notion of a Circular Queue

In order to reuse the vacant positions, we will have to bring rear to the Oft position if it is empty.

i.e.,

if (rear == MAX-1)
rear = 0;

else
rear = rear+1;

This can also be written as rear: (rear+l) %MAX;

The queue is logically treated in a circular manner.

Example

Assuming that the queue contains three elements as in the previous example i.e.

CIDIE
rt

front (ear

Now, we can insert an elements F at the beginning by bringing rear to the first position in the queue.

F CIDIE
tt

rear front

there

c D E

Stffi:56'gnt*Data $tructuro U8ing C

This can bc rcprcscntcd circularly as shown.

Gircular Queue

A peculiar situation arises when the queue is full.

In the above example, if another element, G is added to the queue, it will look like

i.e. rear and front coincide. But rear and front coincide even when the queue is empty! Hence there
is an ambiguity.

rear: : front cannot be used for both i.e. to the check for an empty queue as well as the condition
for a full queue. Hence some method of resolving this problem is needed.

We shall keep the rear : : front condition as a check for the empty queue since initially both are
initialized to the same value. Thus, we need another method to check for a full queue.

There are three possible solutions

1. Use a counter to keep track of the number of elements in the queue. If this counter reaches
MAX, the queue is full.

rear

front

'^T,,*,

t.: : .,.,' f$@ffi{d
2. Allow only MAX-1 values to be put in the queue i.e. use one

queue full condition will occur when

less element of queue. Thus the

(rear+ 1)%MAX::.front

3. The values of front and rear could be set to some values that are not valid array indices to
indicate an empty condition.

i.e. if rear becomes equal to front after a remove operation it indicates queue empty and hence

they could be reset to -l and (rear: : -l) && (front : : -1) will be the conditions for queue

empty.

If rear becomes equal to front after an add operation, it implies the queue is full. Thus rear ! : -l
&& front !: -l will be the condition for queue full.

Functions for Circular Queue

1. Initialize Q

void initqueue (Q *cq)
{

cq -+ rear = cq -+ front - 0,'
]

2. Is empty

int isemptycq(Q *cq)
{

return(cq -+ rear == cq -) front);
J

3. Is full

int isfullcq(Q*cq)
{

reLurn((rear +1)Z MAX == front);
]

Here we have used the method (2) to solve the conflict between empty and full condition.

Add
void addcq(Q *cq,
{

cq -) items [cq -)
cq -+ rear= (cq -)
]

int num)

rearl = numi

rear +1) % uax; /*rncrement rear circularly */

5. Delete
int delcq (e *cq)

{ n= cq -+ items [cq -+ front]) ,.

cq -+ front= (cq -+ front+1)B UaX;,/* Increment frontreturn n.
l
The following program illustrates a circular queue operations
MAX:3.

/* Illustrates circular queue operation "/
,/*Declarations and Functions here */
main ()

{ Q cq1;
inL num, choice,-
initqueue (&cqr) ;
do
{

printf ("\n 1:ADD,,) ;
printf (,,2 : DELETE,,) ;
printf (,,3:EXrT");
printf (,,\n Enter the option t',) ;
scanf (,,2d", &choice) ;
switch (choice)
{ case 1 : printf (,,\n Enter the number t',) ;

scanf ("2d", &num) ,.

if (isfutt-cq (&cq1))

printf ("\n Queue is full- \n,');
e1 se

addcq(ecqf,num) ;
break;

case 2 : if (isemptyeq(acqr))

_
printf ("\n Empty eueue t.,') ;

etse
printf (8d is del_eted ,, delcq(acqr)) ;case 3 : print.f (,,\n Exiting,,);

]
]whil-e(choice ! = 3);

: ADD2 : DELETE3: EXIT
ter the option : 1
ter the number : 10

: ADD2 : DELETE3: EXIT
ter the option : 1
ter the number : 2O

circrr'larlrr * /
I

for an array of size

Stack and Queue:i

1 : ADD2: DELETE3:

Enter the oPtion :

Enter the numbe-r i

1 : ADD2: DELETE3:

Enter the oPtron :

10 1s defeted

EXIT
1

30

EXIT
z

1 : ADD2 : DELETE3: EXIT

Enter the oPtion : t
Enter the number : 40

1 : ADD2 : DELETE3: EXIT
Enter the oPtion : l
Exiting

9.3 Dynamic lmplementation of Gircular Queue

In a circular queue, implemented as a test, the last element will point to the first. Since it is a circular

list, only one pointer to the list is needed to perform all operations on the list'

Operations on Circular Queue

l. qptr = NULL;

2. Add 10

qptr

Add 20

10

#4lffiS4wlwsi

4. Add30

Delete

These operations can be performed as follows

l. Initialize Queues
void initqo
t

qptr : NULL;
]

2. Add
void addcq(int n)
t

struct node * newnode;
newnode -(struct node *) malloc(sizeof (struct node))
newnode -+ element = n;
if (q>rr == NULL)
{

qptr = newnode,'
qptr -+ next = qptr;

]
else

{

newnode -) next = qptr -+ next;
qptr -+ next = newnode;

q>tr = newnode;
]

]

Queue empty
int emptycqo
t

return (q>tr == NULL) ;
l

qptr

qptr

trffi, 'S -f;

4. Delete

Stack and Queue

'i n I rlo'l al aaa (\uvvY \ /

t
int.n;
struct node * temp;
temp = qptr -) nextl
if(temp == aptr) /*
i

; n = temp -+ efement;
nnl rr nna nnrla* /

vrrv r4vvv /

fraa(l-amn).

,qptr = NULL;
return n ;

l
qptr + noxt = Lemp -+ next;
Fraa(Famn\ 'QevrL\ts/ , v

reLurn n,'

{O. Types of Queues

A queue can be of two types:

i. Linear Queue

ii. Circular Queue

{ O.{ Linear Queue

In this queue, the elements ilre arranged in a sequential manner such that front position is always less
than or equal to the rear position. When an element is added, rear is incremented and when an
element is removed, front is advanced. Thus, front always follows rear.

Example

f A-fB-fc I
front

Data Struclure Usinq C

1O.2 Gircular Queue

In this queue, the elements are affanged in a sequential manner but
circularly arranged. The rear and front move in a clockwise direction.

Exomple

front €*'
Circular Queue

11. Priority Queue

ln a queue, the elements are inserted at the rear end and deleted frorn
the front. Hence the FIFO ordering is maintained and all insertions
and deletions are done in a strict sequence. Even though the element
themselves may have some inherent order among themselves it is
ignored.

However, in some cases, this strict order needs to be violated and the
intrinsic ordering among elements will determine which element
gets removed first.

Stackand Queue

can logically be regarded as

3

Oct.2O12- 2M
What is Circular queue?
How it is represented.

Apr.2012 - 2M
Define: Circular Queue

Oct.2A09 - 2M
What is Circular Queue?

4

Apr.2012- 4M
What is Priority Queue?
Explain in short.

Apr.l 1, 10, Oct.10 - 2M
What is Priority Queue?

nition

priority queue is a data structure in which the intrinsic ordering among the elements decides the
t of its basic operations.

heduling ofjobs by the operating system.

.rys ltiWt.f

Here the operating system assigns priorities to each type ofjob. The jobs are placed in a queue and

the job with the highest priority will be executed first.

Types of Priority Queues

1. Ascending Priority Queue: Elements can be inserted arbitrarily but only the smallest element

can be removed.

2. Descending Priority Queue: This allows deletion only of the largest element.

Elements of the Priority Queue

The elements need not be numbers or characters but they may be complex structure that are ordered

on several fields like Telephone directory listing comprising of last name, first name, address.

The basis of ordering need not be a part of the element. It could be an external value on the basic of
which ordering is done/or example - time.

Thus a queue can be viewed as an ascending priority queue whose elements are ordered by time of
insertion. The element having the smallest time value comes out first.

List lmplementation of Priority Queue

A Priority Queue can be implemented dynamically in two ways-

l. Maintaining an ordered linked list of elements

2. Maintaining unordered linked list of elements

Let us consider implementation of an ascending priority queues.

i. Ordered List Implementation: In this method, the elements are added to the list in such a

way that the list is in the sorted order'

Thus, when an element is to be added to the priority queue, it is inserted in its correct position

in the queue.

For deletion, the first element (which is the smallest element) is removed.

Exomple

l. front: reat: NULL

2. Add 10

t,on,---rfTliill
,""r/-

trata Structure Using C

3. Add 5

Stack and Queue

4. Add 20

5. Add t5

Priority Queue as unordered list: In this method of implementation, elements are added to

the rear of the queue. Thus, insertion is a simple process.

However for deletion, the entire list has to be examined in order to find the smallest element,

which is then removed from the list.

Example

1. front: rear: NULL

2. Add 10

3. Add 5

DabrS $d#fffQrle{F

4. Add 20

12. Doubly-Ended Queue (DEaUE)

A DEQUE is an ordered set of items into which items may be inserted and deleted from either end.
If the two ends of the queue are called left and right, then the four operations on the deque will be

l. addleft or insertleft

2. addright or insertright

3. deleteleft

4. deleteright

A DEQUE can be of two tyWS:

1. Input-Restricted Deque (IRD): This is a deque which allows insertions only at one end but
allows deletions at both ends of the deque.

Valid operations

addleft, del-etefeft, deleteright
2. Output-Restricted Deque (ORD): This is a deque which allows deletions at only one end of. the deque but allows insertions at both ends.

Valid operations
addlef t, addr igrht , del-etef ef t

5.

front
10 rl 5 rl 20 X

rear

frd4l,$,r! Stackard Queue

Example

Let us consider a deque, IRD and ORD implemented using an array. Left and right represent the two
ends ofthe queue.

ORD

Left
Right

FT'T-l--l
LR

ttFTBTl
LR

lnvalid

t-T^T{-_l
LR

Operation

Addleft (A)

2. Addright(B)

Addleft (C)

4. Deleteright()

Deleteleft

T^T_T_TI FT-T-TI
Left

Right

Invalid

Deque

FT-I_TI
Left
Right

trTBT-TI
LR

FTATtfl
LR

FT^T-TI
LR

[T^T-T]
L

R

IRD

1.

t"T;T]-l
LR

rcT-T_TI
L

R

l.

Applications of Queues

Queues are used in computers for scheduling of resources to
applications. These resources are CPU, printer, etc.

Multiple print jobs given to a printer are organized in the
FIFO manner in a print queue and given to the printer.

In batch programming, multiple jobs are combined into a
batch and the first program is executed fnst, the second is
executed next and so on in a sequential manner.

4

Oct14, tpr.15,10 - 2M
What are the
Applications of Queue?

Qct2OOg - 4M
What is Queue? What
are the various
Applications of Queue?

Fdal$nteq$jlr$itiglCI $tac{< and Queue

{ 3,{ CPU Scheduling Algorithms

In a multiprogramming environment, multiple processes are to be handled by the CPU. These

processes can be

o Interactive programs

o Batch jobs

. Systemtasks

All these processes need the CPU. Hence, they should be scheduled properly to increase the CPU

utilization and throughput. The scheduling is done by using queues.

The various methods usedfor scheduling the processes are

l. FCFS - First Come First Served Method

2. Round Robin Method

First Come First Served (FCFS)

o New jobs or processes are added to the queue at the end.

o The CPU executes the processes at the front ofthe queue.

o After the process is executed, it switches to the next process.

o Once the CPU is allotted to a process, it is released when the process is completed.

The average turn around time is an important criterion to determine the performance. Tum around

time is the time interval between submission of a job till its completion.

Example

Job Burst Time (JoJr timel
1 12

2 6

3 3

.'. Averase turn-around time

o12
12+18+21=_---;-J

18

t7

21

J2 J3J1

,Satfi
, $l4l$$rs.rusir€,e Stack and Queue

Advantages

l. It is very simple method of scheduling.

2. A single queue can be used to implement FCFS.

Disadvantages

l. A smaller job or a high priority job may have to wait for a long time.

2. If the job at the front is an VO job, it will utilize the CPU for a long time.

Round Robin Algorithm

This is a very popular method and is mainly used in time-sharing systems. Instead of waiting for the
current job to be completed before taking the next job, each job in the queue is assigned a small unit
of time called time slice or time quantum.

The CPU selects the first job from the queue, executes it for one time slice. After the time slice is
over, it switches over to the next job in the queue. The intemrpted job is added back to the end of the
queue.

If the job completes execution before the time slice, it released the CPU.

Round Robin algorithm is implemented using circular queue.

Jo.b FWqtTlme
1 12
2 6
3 3

If a time slice: 3 units. the Round Robin Aleorithm will work as shown.

6912151821
tlftrl

J3 over J2 over Jl over

Average turn around time:

Advantages

l. All jobs get a fair share of the CPU.

2. Priorities can be assigned to the jobs so that a higher priority job does not have to wait for a

long time for its time slice.

Disadvantage.' Implementing the Round Robin method is more complex.

9+15+21
3 :15

J1 J2 J3 l1JI J2 t4JI J1

D,€St1ud$,p,.U€!ng jg--

.Solved Examples

$tack and Queue

1. Convert the following Infix Expression into Prefix
Expression:

i. (A+B)/CxD-E ii. A-(B+C/D)nE
Solution

The steps to convert any infix expression into prefix are:

i. Reverse the infix expression.

ii. Make every '(' (opening bracket) as ')' (closing bracket) and every ')' as '('
iii. Convert the modified expression to postfix form.

iv. Reverse the postfix expression.

i. (A+Byc*D-E
a. Step I: Reverse the infix expression

E-D*C/)B+A(
b. Step 2: Make every '(' as ')' and every ')' as '('

E_D*Ci(B+A)
c. Step 3: Convert the expression to postfix form:

Steps Expression Gurent
.

Svmbol Stack Output Gomments

1 E-D"C/(B+A) Emotv Emptv lnitiallv
2. -D*C/(B+A) E Empty E Print the operand/ Attach the

operand at the end of postfix
exoression

3. D"C/(B+A) E Push the current operator
onto the top of the stack

4. .C/(B+A) D ED Attach the operand at the
end of oostfix expression

5. c/(B+A) ED Push the higher precedence
operatrcr onto the top of the
stack

6. /(B+A) c EDC Attach the operand at the
end of oostfix exoression

7. (B +A) I I EDC* Same priority operators so
pop one and at end of
nostfix

8. B+A) (t(EDC" As opening bracket so push
it onto stack

9. +A) B t(EDC-B Attach the operand at the
end of postfix expression

10. A) + l(+ EDC*B Attach the operator onto
stack

11) A - l(* EDC*BA Attach the operand at the
end of postfix expression

8414:9tructtrE U,sttg

Reverse the resultant expression, we get the prefix as,, - l+ AB * CDE"

ii. A-(B+C/D)nE
a. Step 1: Reverse the infix expression

En)D/C+B(-A
b. Step 2: Make every '(' as ')' and every .) , as '(o

En(D/C+B)-A
c. Step 3: Convert the expression to postfix form:

the resultant expression, we get the prefix as " - A+B/C^DE;t

$tqg! qnd Queue

12. Empty) -l EDC"BA + Pop all operators until (from
stack and add at end of
postfix

13. Empty Empty empty EDC*BA+/ Pop all operators until empty
stack and add at end of
postfix

$teps Currerrt
Sumbot Stack, Output

1 En(D/C+B)-A Empty Emptv Initially
2 n(D/C+B)-A E Empty E Print the operand/ Attach the

operand at the end of postfix
exoression

3 (D/c+B)-A E Push the current operator
onto the top of the stack

4 D/C+B)-A (E As opening bracket so push it
onto stack

5 /c+B)-A D ED Attach the operand at the end
of postfix expression

6 C+B)-A I I EDn Higher precedence operator
is popped and attach at the
end of postfix expression

7 +B)-A c I EDnC Aftach the operand at the end
of postfix exoression

8 B)-A + + EDnC/ Higher precedence operator
is popped and attach at the
end of postfix exoression

9)-A B + EDnC/B Aftach the operand at the end
of postfix exoression

10 -A) EDnC/B+ Pop all operators until (from
stack and add at end of
postfix

't1 A EDnC/B+ Push the current operator
onto the top of the stack

12 Empty A EDnC/B+A Aftach the operand at the end
of oostfix exoression

13 Empty Empty empty EDnC/B+A- Pop all operators untill empty
stack and add at end of
oostfix

2. Evaluate the following postfix expression using a Stack:

AB/CD't + A = 6rts- = 2o C =3, D = 4

Solation

3. Convert the following infix expressions into postfix'
i. (A+B)*C

Solution
ii. (A+B) *(C+D)

Push the operand onto the toP

of the stack

Push the oPerand onto the toP

Push the operand onto the toP

Push the oPerand onto the toP

of the stack

Perform the addition oPeration
between 3 and'12

The on is (A*If

.ffi',t.lffi, sffiit.
*!iltrH

1 (A+B)*C Emotv Empty Initially

2 A+B)*C ((Push the oPening bracket onto
the top of the stack

3 +Brc A (A Print the oPerand/ attach the
operand at the end of Postfix
exoression

4 Brc + (+ A Push the current oPerator onto
the top of the stack

5 rc B (+ AB Attach the current oPerand at
the end of Postfix exPression

6 *c
) AB+ Pop the top oPerator from stack

until '(' and add that oPerator at
the end of Postfix exPrestlqn-

7 c AB+ Push the current oPerator onto
the toD of the stack

8 Empty c AB+C Attach the cunent oPerand at
the end of Postfix expression

9 Empty Empty AB+C* Pop all oPeratorc from stack
and add at the end of Postfix
exoression

The Postfix Expression is AB+C*

Data $truclure UBing C

il. (A+B) *(C+D)

The si (A+B)x(C D)

The postfix expression is AB+CD+*

4. Write a function to accept size of stack and insert element
till it is futt.

Solution
Function to accept size of stack and insert element till it is full
void push ()

{

int item, maxsize, top;
printf ("\n ent,er stack stze:-',);
scanf ("2d", &maxsize) ;

if (top==maxsize-1)

Stack and Queue

ven expresston ls (A+ts;+1('+
Steps Expression

(lnputl
Gurrent
$vmbol

Stack Output
lnostflr Ernl

Gomments,

1 (A+B)'(C+D) Emptv Emptv Initially
2 A+B)1c+D) ((Push the opening brackel

onto the top of the stack
3 +B). (c+D) A (A Print the operand/ attach the

operand at the end of postfix
exDression

4 B)" (C+D) + (+ A Push the current operator
onto the top of the stack

5). (c+D) B (+ AB Attach the current operand at
the end of oostflx exoression

6 .(C+D)
) AB+ Pop the top operator from

stack until '(' and add that
operator at the end of postfix
expression

7 (c+D) AB+ Push the current operator
onto the too of the stack

8 c+D) (-(AB+ Push the opening bracket
onto the top of the stack

I +D) c *(AB+C Attach the current operand at
the end of oostfix exoression

10 D) + '(+ AB+C Push the current operator
onto the top of the stack

11 D *(+ AB+CD Attach the current operand at
the end of postfix expression

12 Empty) AB+CD+ Pop the top operator from
stack until '('and add that
operator at the end of postfix
exoression

13 Empty AB+CD+. Pop all operators from stack
and add that operator at the
end of oostfix exoression

{

W
printf ("\n stack is full") ;
getch () ;
exit (0) ;

{
printf("\n enter the element
scanf ('2d", &item) ;

top = toP + 1'
stack Itop] =item;

]

to be inser ted ': - ") i

5. Conoe.t the following infix expression into prefix:

i. A+B*c/D

Solution

i. A+B*C/D
:A*B*/CD
_A+*B/CD
:*A*B/CD

. +A*B/CD

ii. A+B+c+D
:*AB+C+D
:++ABC+D
: *** ABCD

+++ABCD

ii. A+B+C+D

6. W.ita a'C'progrum to reverse given string using staclc

Solafion
#include(stdio.h>
#inctude(conio ' h>
void maino
{ char str [80] ;

int i, j , k, swap;
clrscr () ;
printf ("\n Enter the String") ;
gets (str) ;
ior (i=1; i<=strlen(str) ; i++)
{ for(j=o;j<1;j++)

t

'l;,.f,";:;,r,;;i.;*1.,
jffi$.Qg$t$

if (str til >=str tj I)

{ swap = strljl;
str [j] = str [i] ;

]
]

]
printf("\n The String is in Reverse order,,);
nrr|- q /qir)

getch () ;

7. Convert the following infix expression into
expression: A + (B + C

^
D) -E/F r (G + D)

Solution

Convert lnfix Expression into Postfix Expression

AB+C^D*/E_F*GD+
AB^D*/+E_FGD*+
A^B D*/+_EFGD*_+
A^BD */+_EFGD*+_

postfix

8. Convert following infix expressions into postfix.
i. A+BfC ii. A+B+C

Solution

i. A+B*C
(Precedence of* is higherthan of+)
Step l: A + (B*C) convert the multiplication
Step 2: A + (BC*) convert the addition

Step 3: A (BC*) * Remove parentheses

Step 4: ABC*+ Postfix

ii. A+B+c
(Precedence of+ is higherthan of+)
Step l: A + (B+C) convert into the Parentheses
Step 2: A + (BC+) convert the Multiplication
Step 3: A (BC) * Remove parentheses

Step 4: ABC++ Postfix

9. Write a program to accept size of stack and add elements
onto the stack one by one which are accepted from user
until stack is full.

Solution
#include<stdio. h>
#include<conio. h)

.Sf ,afd,0ueue
Data $tructure UsingC

void main ()

t
int top, s [10] ; ,

clrscr O ;

top =-1;
ror(;;,
i

item, choice;

printf("\n 1. InserL ");
printf ("\n 2 DisPlaY") ;-printf ("\n Enter Your Choice ")
scanf (">od", I choice) ;

switch (choice)
t

case 1:
Printf("\n Enter the ltem
scanf ("%d", aitem) ;

push(item, &top, s) ;

br eak;
case 2:
disPlay (top, s) ;

br eak;
]

]
getch () ;

]
void push(int item, int *top, int s

{
if (*top == STACK-SIZE -l-)

{

Printf ("\n Stack Overflow\n"
r eturn;

]
s [** (*top)] = item;

]
void display (int top, int s [])

{
int i;
rr([oP =-- Ll

{
printf ("Stack is EmPtY\n") ;

r eturn;

to be fnserted ");

il)

);

]
printf("\n The Contents of the Stack \n");
for (i=O; i(=toP; i++)
{

printf("%d\n", sIi]);
i

10. Write ^'C' Program for Dynamic Implementation of
Queue.

Solution
A Program for Dynamic Implementation of Queue, i.e.,
implementation of Queue using linked list is as:

/ / <lrtrnlrria l-n ranya<anf nrrarra
I I uv !vy!

#incfude<stdio. h)
#include(mal-1oc . h)
struct node
node
{

int info;
strucL node *1ink;

] * f ront=NULL, *1s61 =NULL ;

main ()

{
int choice,'
while (l-)
{ printf("l.fnsert\n");

printf ("2.DeLete\n") ;
printf ("3 .Display\n") ;
printf("4.Quit\n");
printf("Enter your choice : ");
scanf ("8dr', &choice) ;
switch (choice)
{
case 1:

insert () ;
break;

case 2:
detO;
br eak;

case 3:
display () ;
br eak;

case 4:
exit (1) ;

oerault:
printf ("wrong choice\n") ,'

l /*End of switch*/
] /*nnd of while*/

] /*End of main () */
insert o
{

struct node *tmp;
int added item;

Slackand Queua
Data $tructure Using C ,

tmp = (struct node *)malloc(sizeof(struct node))
printf("Input the element for adding in queue :

scanf ("%d", &added item) ;

tmp->info = added-item;
tmp->Iink=NULL;
if (f ront-==NULL) /*tf Queue is empty*,/

front=tmp;
ef se
rear - >link=tmp;
rear = LmP;

i /*End of inser L O * /

del o
t

struct node *t-mp;

if (front == NULL)
printf ("Queue Underflow\n") ;

else
i

LmP-ltottt t

printf ("Deleted element 1s

front=front->link;
free (tmp) ;

]
] /*End of del () */

display ()

i
struct node *Ptr;
ptr = front;
if(front == NULL)
printf ("Queue is emPtY\n");
e1 se
{

pr in1-f ("Queue elements : \n"
while(ptr != NULL)

i
printf ("?d ",Ptr->info) ;

ptr = Pt.r - >f ink;
i
prinLf("\n");

] /*nno of else*/
] /*End of display O * /

9.1\nrt tmn- > inf o)ov \1r , vrLLy z

);

Data Slructure Using C

11. Write a C program for implementation of dynamic queue.

Solution
#include(stdio.h>
#include (malfoc . h)
1-rrncclcf sl ruel nOde
node
{

int info;

i * f ront =NULL, *rear =NULL ;

main ()

{

int choice;
while(1)
{

printf ("1. Insert\n") ;

pr inl- f ("2 . Delete\n") ;
p r i n t f (" 3 . D i s p l a y \ n ") ;

printf ("4.Quit\n");
pr intf ("EnLer your choice
scanf("8d",&choice);
switch (choice)
{

case 1:
lnsert();
br eak;

case 2:,
delO;
br eak;

case 3:
dlsplay () ;

br eak ;

case 4:
exit (1) ;

de fauf t :

printf ("Wrong choice\n") ;

]/*nnd of switch*/
] /*End of while*/

J/*End of mainO*/
inser t ()

{

struct node *tmp;
int added_item;
tmp = (struct node *;ma11oc (sizeof (struct node));
printf ("fnpuL the el emenL for adding in queue : ") ;

scanf ("?d", &added_item) ;

tmp-)info = added item;

$tack and aueue

/ / el I rr'.r rrro | ^ ranra<onf Or!arrF//

r') ,'

tmp-)link=NULL;
if (front==NULL)

front=tmp;
else
rear->1ink=tmp;
r ear : tmp;

] /*end of inser L () * /
del o
{

struct node *tmp;
if(front == NULL)
pr intf ("Queue Under ffow\n") ;

efse
t

tmp=front;
pr intf ("De1eted efement is
front=front- >Iink;
f ree (tmp) ;

8d\n", tmp- >inf o) ;

]

]/*End of del ()*,2
display ()

{

strucL node *ptr;
- tvants.

I:,u! - !!vrru,

if (f ront NULL)
pr intf ("Queue is emPtY\n") ;

eJ-se
{

pr intf ("Queue elements : \n") ;

while(ptr != NULL)
{

printf ("8d ",Ftr ->info) ;

ptr = ptr->fink;
]
printf("\n");

],i*End of else*/
] /*end of dlsplay () * /

12. Write a 'C) program for implementation of circular
queue.

Solution
#incfude<stdio. h>
+l i nn l l.la.nrnnocg , h)rf rtvruuv \yt

#define QUEUE_SIZE s

/ * Frrne t- i nn to check dlrerc ower f f ow * // r qaru uavrr

int qfull (int count)
{

llg"til4 oueuo

/*tf Queue is empty*/

n4ta sttuctufg.,U9,in9,€.,,

retrun (count
]

/ * Function to
int qempty (int
t

return (count
i

Stqq!< ard Queue

QUEUE SIZE) ?

/* Frrnct i nn f o insert an item
void j-nsert_rear (int item, int
{

at the read end*?
Stl, int *r, int *count)

is 3d\n", ql*ll);

/af rrl I f *anrrnj-) l

printf ("\n overflow of Queue") ;

r e tur n ;

]
*r = (*r + 1) ? eUEUE_SIZE;
q[*r] = item;
*count + = L;

]

/+ Function to delete an item from the front end ofqueue*/

void delete_front (int q [] , int * f, int *count)

{

if(qempty(*count))
t

printf ("Underf1ow of Queue") ;

return;

printf ("\n The deleted elemenL
*f= (*f+1) ? QUEUE SIZE;
* count I ;

]

/* Function Lo display the contenLs of fhe queue */
void display(int qtl, int f, int count)
t

int i,J;
if (qempty (count))

t
printf("\n Q is Empty
r a r 11 r n .

]'
printf ("\n Contents of

for (j =1 ; j <=count, j ++)

if
{

nharV drr arr a

count)
under fl- ow * /

0;

,');

Queue ") ;

Q?ai E

{

i
]

void main ()

{

int choice,
€ - n.

L_

count = 0;
f or (; ;)

{

printf("\n?d", qIi]);
i = (i+r) ? QUEUE SIZE;

item, f , r, count, c1[20] ;

'l

Inserted ");

Inserted "\;

printf ("\n 1 for rnsert") ;

prlntf ("\n 2 for Delete") ;

printf ("\n 3 for DisPlaY");
printf ("\n Enter the Choice") ;

scanf ("2d", &choice) ;

switch (choice)
{

CASC 1:
printf ("\n Enter the ftem to be
scanf ("2d", &i-tem) ;

insert-rear (item, q, &r, &count)
br eak;

case 2 z

printf ("\n Enter the Item to be
scanf ("2d". &item) ;

delete_front (q, &f, &count);
br eak ;

case 3:
display(q, f, count);
br eak;

default:
exit (0);

13. Write a function which compares the contents of two

stacks and display message accordingly.

sataflry$rgusirqc

Solufion

#include(stdio. h>

#include(conio. h)
void checkstack (stack
{

whil-e (!isempty (S.)&&!isempty (Sz)
{

(item Isr-+topl == item Is2+top])

PoP (Sr) ;

POP(SZ);
]

else
t

printf ("stack does not equal") ;

return 0;
]

i
if (isempty (Sr) && isempty (Sz))

{

printf ("both stacks are equa1") ;

i
el-se
pr intf ("stack does not equal") ;

]

int isempty(stack *S)

{

if (s-+top==-1)
return 1;
return 0;

har pop(stack *S)

char ch;
ch = S+item Is+top] ;

S-+top: = ;

return ch;

Slip{r Areqe

*s1,stack *sZ)

if
{

PIH: {!q.usir{!i$
Stack and Queue

WPUouestion$
tOct.15.10.Apr.1 1.10 - 2Ml

lOct.I 4.Apr.1 5.1 0 - 2 Ml

lOct-2012.APr.11 - 2Ml

IOct.2012- 2Ml

IAPr.2O12- 2Ml

tApr.2012- 2Ml

lOct.2011 - 2Ml

1o,cr.2011 - zMl

IOct.2010 - 2Ml

lOct.2009 - 2Ml

IAor.20O9 - 2Ml

lOct.2015- 4Ml

lOct.2015 - 4Ml

lApr.2015 - 4Ml

lApr.2015 - 4Ml

lOct.2014 - 4Ml

lOct.2014- 4Ml

tOct-2014 - 4Ml

IOct.l4.10.Apr.10 - 4Ml

1Oct.14.12 - 4Ml

l.
2.

3.

4.

5.

6. Define: Circular Queue

7. What is Recursion?

8. State different types of Queue.

g. What is a Stack? Discuss Operations Performed on Stack.

10. Explain different operations performed on a Stack.

11. What is Circular Queue?

l.

2.

3.

4.

5.

6.

What is Priority queue?

What are the applications of queue?

What are the Application of Stack?

What is Circular queue? How it is represented.

What is Queue? State various operations performed on a

Queue.

Convert given infix expression to postfix expression:
(A-B)lC"D*E+(F-G)

What is queue? Explain its operations in detail.

Write a function which compares the contents of two queues

and display message accordinglY.

Write an algorithm to convert given infix expression to prefix

expression.

What is stack? Explain its operations in details.

Write a C program for implementation of dynamic queue.

Write a function which compares the contents of trvo stacks and

display message accordinglY.

Write a "C" program for implementation of Circular queue'

Write an algorithm to convert Infix Expression to Postfix

Expression.

8.

9.

ll.
12.

w,
10. Explain selection sort technique with an example.

i. A+B*C/D ii. A+B+C+D
Write a'C' Program for Dynamic Implementation of Queue.

Convert the following Infix Expression into Prefix
Expression: i. (A+B)/CxD-E ii. A-(B+C/D)nE
Write a'C'program for Dynamic Implementation of stack'

What is Priority Queue? Explain in short.

Write a program to accept size of queue and add elements in the

queue one by one from the user till the queue is filled.

Evaluate the following postfix expression using a Stack: AB/CD
*+A:6,B:2,C:3,D:4

Write an algorithm for prefix to infix conversion of an expression.

What is stack? Discuss various applications of stack.

Convert the following infix expressions into postfix.

i. (A+B)*C ii. (A+B) *(c+D)

20. Write a function for adding and deleting elements from stack.

21. Explain algorithm to convert infix expression to its equivalent
postfix expression.

22. Explain Dynamic Representation of Stack.

23. Write a program to reverse a string using Stack.

24. Explain Queue with example.

25. Explain algorithm to convert infix expression to its equivalent
postfix expression.

26. Explain Dynamic Representation of Stack.

27. Write a program to reverse a string using Stack.

28. Convert the following infix to prefix expression:

i. A+B*CID ii. A+B+C+D

Stack and Oueue

IOct.2012- 4Ml

LOct.2O12- 4Ml

lApr.2012- 4Ml

tApr.2012- 4Ml

lApr.2012- 4Ml

lOct2011 - 4Ml

lOct.2011 - 4Ml

tOct.2011 - 4Ml

1Oct.2O11 - 4Ml

lOct2011 - 4Ml

tApr.2011- 4Ml

IApr.l1.Oct.l0 - 4Ml

IAor.2011 - 4Ml

tApr.2011 - 4Ml

tApr.2011 - 4Ml

lOct-201o - 4Ml

lOct.2010 - 4Ml

tOct.2010 - 4Ml

lOct.2O1O - 4Ml

t6.

17.

18.

19.

Data Structure Using C Stack and Queue

29. Convert the following Infix Expression into Postfix

Expression. A* (B * C n D) - E/F * (G + D).

30. Explain algorithm to convert infix expression to its equivalent

postfix expression.

31. Evaluate the following postfix expression: 4, 5,4,2, A, *, *,
2,2, n ,9r3,l, *,-

32. Convert the following infix expression into postfix expression:

A*(B+CnD)-ElFx(G+D)
33. Write a 'C' progtam to reverse given string using stack.

34. Explain algorithm to evaluate postfix expression.

35. Convert following infix expressions into postfix.

a. A+B*C b. A+B+C
36. Explain Static and Dynamic Representation of Stack'

37. Write a program to accept size of stack and add elements onto

the stack one by one which are accepted from user until stack

is tull.

38. What is Queue? What are the various Applications of Queue?

How Queue is differ from Stack?

tOct.2010 - 4Ml

lApr.2010 - 4Ml

lApr.2010 - 4M

lApr.2010 - 4Ml

IApr.2O10 - 4Ml

lOct.2009 - 4M

IOct.2009 - 4Ml

lOct.2009 - 4Ml

1Oct.2009 - 4Ml

LOct.2o09 - 4Ml

L7u
ul$r0ll

ehlren 5

TnEEs

l:i:'i'4:'j"q''''i/w-*.*tjd':j.'-''.j'e

lntroduction

A tree is a data structure which represents a hierarchical tree structure with a set of linked nodes. lt is
an acyclic connected graph where each node is connected to a set of zero or more children nodes.
and also it can have at most one parent node.

There are many different ways to represent trees, but in common representations either it represents
the nodes as records allocated memory dynamically with pointers to their children, their parents
(or both), or as items in an array, with relationships between them according to their positions in the
AITAV.

2. Tree TerminologY

Definition of a Tree

A tree is a finite set of nodes with one specially designated node called the root and the remaining

nodes are partitioned into 1) : 0 disjoint sets T1 and Tn where each of those sets is a tree' T1 to Tn

are called the sub trees of the root'

Example

Tree

I| this example, A,B,C,D,E,F,G and H form a set of nodes with A as the root' The remaining nodes

are partition"d i,,to three sets (trees) with B,C and D as their respective roots.

Null Tree

A tree with no nodes is aNull Tree'

Node

A node of a tree is an item of information along with the branches to other nodes' The tree show

has 8 nodes.

Leaf Node

A leaf node is a terminal node of a tree. It does not have any nodes connected to it' All other node

are called non-leaf nodes, or intemal nodes'

H. F, G and D are leaf nodes.

Datastru,Etgus s..

Degree of a Node

Example

E, F and H are descendents ofB.

Ancestors

The ancestors ofa node are all the nodes along the path

Examples

B and A are ancestors ofE.

Trees

The number of subtrees of a node is called its degree.

The degree of A is 3, B is 2 andD is 0. The degree of leaf nodes is zero.

Degree of the Tree

The degree of a tree is the maximum degree of the nodes in the tree.

The desree of the shown tree is 3.

Parent Node

A parent node is a node having other nodes connected to it. These nodes are called the children of
that node.

The root is the parent of all its subtrees. A,B, and C are parent nodes.

Siblings

Children of the same parent are called siblings.

B,C and D are siblings. E and F are siblings.

Descendents

The descendents ofa node are all those nodes which are reachable from that node.

from the root to that node.

Level of a node

This indicates the position of a node in the hierarchy. The level of any node: level of its parent +1.
The root is considered to be at level 0.

Examples

B, C and D are the level l. H is at level3.

Forest

A forest is a set ofn >:0
Example

These three trees form the forest if A is removed'

Binary Trees

'i,tliiii.rii;j;j!:;

Height or DePth of a Tree

The maximum level of any node in the ffee is the height or depth of

the tree.

The given tree has a height: 3. This equals the length of the longest

path from the root to anY leaf.

disjoint trees i.e. if we remove the root, we get a forest of trees'

(ii)

Forest

e
Fb

@
(i) (iii)

19l

A binary ffee is a finite set of nodes, which is empty or partitioned

into three sets; one which is the root and the other two are binary

trees called its left and right subtrees.

It is a tree where every node can have

(children).

,@ttcf la
,i\ -\6 6 0

Binary Tree

at the most two branches

WSW
Strictly Binary Tree

A strictly binary tree is a binary tree where all nonleaf nodes have two branches.

Strictly Binary Tree

Complete Binary Tree

A complete binary tree is a strictly binary tree with all its leaf nodes at the same level, d (d
height or depth ofthe tree).

is the

Gomplete Binary Tree

The maximum number of nodes on level i is 2i.

The complete binary tree with a total of d levels (from 0 to d-l) contains

d-l
number of nodes : I 2i :2d _l

i:0

Almost complete binary tree

A binary tree with d levels is almost complete if levels 0 to d-2 are full and the last level i.e. level d
is partially filled from left to right.

Tree$
Ddar$tr,qgirr€,u . lll g€

Almost ComPlete Binary Tree

Skewed Binary Tree

The branches of this tree have either only left branches or only right branches. Accordingly the tree

is called left skewed or right skewed tree'

Left skewed binarY tree Right skewed binary tree

Binary Search Tree

A binary search tree is a binary tree in which the nodes are arranged according to their values' The

left node has a value less than its parent and the right node has a value gleater than the parent node'

i.e. all nodes in the left subtree have values less than the root and those in the right subtree have

values greater than the root.

Binary Search Tree

Oct20O9 - 2M

Oenne Almost ComPlete
Binary Tree.

Representation of Binary Trees

A binary tree can be represented using

1. SequentialRepresentation

2. LinkedRepresentation

1. Sequential Representation: In this method, we will number each node of the tree starting

from the root. Nodes on the same level will be numbered left to right. Since a binary tree

with total 'd' levels will have maximum of 2d -l nodes, we can use an array of
size2d -l to represent the binary tree.

Thus, we can use static allocation method to represent a binary tree.

Example

Level 0

Level 1

Level 2

Gomplete Binary Tree

Here, the number of levels is 3. .'. we need an anay of size 23 - l:7

The tree representation will be:

elements.

0123
BT A B c D E F G

P.slq,.Stfirqt1{e.,ljsing

A B c D E r G H J K

Almost Gomplete Binary Tree

This representation allows random access to any node as shown

i. The ith node is at location i where

(0<i<n)

ii. The parent of node i is at location(i-l)12 - (i:0 is the root and

Example

parent of J (node 9) : (9-l) /2
8/2:4

i.e. E.

iii. Left child of a node i is present at position 2i + | if 2i + 1< n

Ifzi+l >: n. the node i does not have a left child.

Example

Left chitd ofB (node 1) : 2 x I + I
:3
-D

Left child of F(node 5) : 2 x 5 * |

l0+ I
1l

:n
Thus, F does not have a left child.

iv. Right child of a node i is present at position 2i + 2 if 2i + 2
node i does not have a right child.

Example

Right child ofB (node I) : 2 x I + 2
:2+2:4

Since 4 <7,the node E is the right child.

Right child ofG (node 6) : 2 x 6 + 2 : 14 > n

Thus G does not have a rieht child.

Trees

has no parent)

<n. If 2i+2>:nthen

Data Structure Using-C Trees

Note: The above formulae will work only for almost complete binary trees. Any binary tree
can be converted to almost complete binary tree by showing dummy nodes as shown.

7 8 910

Representation of Binary Tree

Dis advantages of Sequential representation

i. Since we are using arrays, there is a limitation on its size ie. we cannot store

information of more nodes than the specified anay size.

ii. lf the tree is not an almost complete binary tree, many array positions will be unutilized.

Example

Consider the skewed tree and its representation

Here, number of levels d = 4
i

Arraysize=2 -1 =15
1234567891011121314

Representation of skewed tree

Thus, only 4 positions are occupied and 11 are wasted.

Nodes cannot be inserted or deleted. Hence, the linked representation is preferred.

BT

lll.

A B t- D E F G

A B (- D

F$,lJ,s!.$'!

Z. Linked Representation: This is a more flexible representation and uses the dyramic memory

allocation. Since each node represents information and contains at the most two children, we

can define a node structure as follows.

struct treenode
{

struct treenode *left;
int data;
struct treenode *right;

j;
typedef struct treenode *TREEPTR;

TREEPTR TOOT;

We shall also be using the definition

#defrne NODEALLOC (struct treenode't)ma]1oc(sizeof (struct treenode))

Example 2

Linked representation

Example 1
Tree

fA)r\6b

Linked Representation

A

NULL B NULL NULL c NULL

Datar Structur€,Using,e Ttees

5. Operations on Binary Tree

Following operations can be performed in the binary tree,

l. Create

2. Insert a value

3. Search for a given value

4. Delete a value

5. Traverse all the nodes (Preorder, Inorder and Postorder).

5,{ Greation of BinarY Tree

A binary tree can be created by declaring a structure and creating pointer variables ofit. The binary

tree created must be empty initially and new nodes can be created by allocating memory dynamically

to them. The node created using dynamic memory allocation will be having its own memory with
size 6 i.e. 2 bytes for integer value stored at node, 2 bytes to store link of left child and remaining 2

bytes to store link of right child. Once the node is created its left link and right link should be kept

NULL.

struct node
{

int vafue;
struct node *left;
struct node *riqht;

];
struct node *create o
{

struct node *newNode;

newNode= (struct node *)malloc (sizeof (struct node)) ;

newNode -)value- <va]ue> / * Uset Input * /
newNode - > Ieft=NULL;
newNode-)right=NULL;
return (newNode) ;

]

The create function is defined to create new nodes (newNode) with dynamic memory allocation and

having its left and right links NULL and value to the node can be provided according to user choice.

Drata;Stfu$ir€..Usiil$ ri:.-,.i

5.2 Insertion

Tres

A binary tree is constructed by the repeated insertion of new nodes into a binary tree structure'

lnsertion must maintain the order of the tree such that values of the left node of a given node must be

less than that node, and value of right node must be greater.

Inserting a node into a tree is actually two step operations-

First, the tree must be searched to find the position where the node is to be inserted. Second, on the

completion of the search, the node is inserted at the specified position into the tree.

Assuming that duplicate entries are not allowed in the tree, two cases must be considered when

constructing a binary tree.

1. Inserting into an-empty tree.

Before insertion of 4
After of4

In this case, the node inserted into the tree

Inserting into a non-empty tree.

is considered the root node.

The tree must be.searched to determine where the node is to be inserted.

Algorithm

i. Compare the value of new node first to the root node of the tree.

ii. If the value of the new node is less than the value of the root node.

insertion

o
2.

p.4*,$tflrq!{qql Trees

if the left subtree is empty insert new node as the left child of the root node

else, the search continues down the left subtree.

iii. If the value of the new node is greater than the value of the root node.

if the right subtree is empty, insert new node as the right leaf of the root node

else, the search process continues down the right subtree.

iv. If the insertion node already exists in the tree, the terminate the procedure as it cannot insert

duplicate node.

void insert(struct node *root, int child)
{

sLrucL node *tempNode;
if (root==NULL))

{
root = newNode,'

i
ef se

{

if (child<root -)value)
{

if (root >feft==NULL)
rooL -) left=newNode;

ef se
insert (root- >1eft, child)

]
if (child>root -)value)

{
if (root >right==NULL)

root-)right=newNode;
else
insert (root - >r ight, child)

i
if (child==root - >va1ue)

{ printf ("Duplicate Node . . .") ; }

]

5.3 Deletion

The algorithm to delete

many special cases. The

an arbitrary node from a binary tree is deceptively complex, as there are

algorithm used for the delete function splits it into two separate operations,

Pgta $truclue,u.$ilg€

searching and deletion. Once the node which is to be deleted has been determined by the searching

algorithm, it can be deleted from the tree. The algorithm must ensure that when the node is deleted

from the tree, the ordering of the binary tree should be maintained.

Special Gases that have to be considered

1. The node to be deleted has no children.

ln this case the node may simply be deleted from the tree.

, The node has one chitd.

The child node is appended to its grandparent.(The parent of the node to be deleted).

Before deletion of 2 After deletion of 2

l\fter deletion of 2

a
\hv./

A6b
3. The node to tre deleted has two children.

This case is much more complex than the previous two, because the order of the blnary tree

must be maintained.

In this algorithm it is important which node should be used in place of the node to be deleted.

i. Use the inorder successor from right subtree of the node to be deleted.

Node to

Node to

Data $ndure bttS C

Else if no right subtree exists replace the node to be deleted with its left child.

Trces

void delete(struct node *curr)
{

/* Node with single child*/
if ((curr - >left =: NULL && curr - >right ! =

curr .>right == NULL))

{
if (curr - >feft :: NULL && curr - >right

{ i f (narenf.- >l-ef t =: curr)\Fg4 v__"

{
parent->left = curr->right;
delete curr;
i
e1 se
i
parent->right = curr- >right;
delete curr;

]
]

NULL)ll (curr+left !=

r = NULL)

NULL&&

After deletion of 5

pra.!a-$!tuftu.re U.l.t $,e''-...,,.'r
1,.,

'
',

i
else / * Ieft child
{

if ln:ront-)lcft ==f r \ystvrrL

{
parent->left = curr

delete curr,'

i
r eturn;
]
,/* A leaf node */
if (curr->lefr ==
{

i f (na rent - > I eftr! \vs!

ParenE->left -
e1 se

parent - >right =

delete curr;
return;

]

present, no right child */

curr)

-) left;

Trees

e1 se
{
n^rAnf -)riohf = curr-)left;
delete curr;
]

NULL && curr->r

== curr)
NULL;

NULL;

ight == NULL)

,/* Node with 2 children */
/* ronl:co node with smallest value in right subtree
/ !Lyfsv

if (curr-)feft != NULI, && curr->right l= NULL)
{

tree node* chkr;
chkr = curr->right;
if ((chkr - >left == NULL) && (chkr -)right == NULL))

{
curr = chk.r;
delete chkr;
curr->right = NULL;
]
el-se /" right child has children* f
t

/* if the node's right child has a left child Move al1 the way down
left to locate smalfest element*/
if((curr->right) ->left != NULL)
t

struct node* lcurr;
struct node* lcurrP;

1 currp = curr - >right;
lcurr = (curr->right)
while (lcurr - >left ! =

i
lcurrp = fcurr;

lcurr = fcurr-)left;
]

- \ l6f t .

NULL)

pqtqstllr4t|rbu.sihg c

curr->key = fcurr,)key;
delete 1curr,.
lcurrp-)left = NULL;

{
el se
{
sLruct* tmp;

tmp = curr->right.;
curr->key = t.mp-)key;
curr -)rrght = tmp- >right;
delete tmp;

]
]

r eturn;
]

]

Trees

in the tree in a specific order.

Qct2O12- 2M
State different types of
traversal technique of
tree.

Qct.2011 - 4M
What are the dffierent
types of Tree Traversal
methods? Explain any
one with suitable
example.

Oct.2010 - 4M
Discuss different Tree
Traversal Methods,

Traversing a Binary Tree

Traversing a binary tree means to do a print out of all the data elements
According to this order there are three types of traversals.

All traversal algorithms are described with following diagram.

Binary Tree

three types are as follows:
Pre Order Traversal

ln Order Traversal

Post Order Traversal

'{#:F#iffig*Eywffiffi*

6.{ Pre Order Traversal

A pre order traversal prints the contents ofa sorted tree, in pre order' ln other words, the contents of

the root node are printed fnst, followed by left subtree and finally the right subtree' So in an In order

traversal the result is in the following string: F C A D J H I IC

Pre order Traversal

i. Do operation on root of the tree

ii. Traverse left subtree

iii. Traverse right subtree

void preorder (struct node *root)

{

if (root ! =NULL)

{

printf (u8d", root->vaf) ;

preorder (root-+lef t) ;

preorder (root-+right) ;

]

]

6.2 In Order Traversal

An in order traversal prints the contents of a sorted treen in order. In other words, the lowest in valu

first, and then increasing in value as it traverses the tree. The order of a traversal would be 'a' to 'z' i

the tree uses strings or characters, and would be increasing numerically from 0 if the tree contain

,l

P,4tf,',${q.,$11pjusihg.€i i,'::

numerical values. So, as shown in figure, an in order traversal would result in the
ACDFHIJK.

In order Traversal

i. Traverse left subtree

ii. Do operation on root of the tree

iii. Traverse right subtree

voi-d inorder (struct node *root)
{

if (root ! =NULL)

i
inorder (root- >1eft) ;

printf ('rZdt', root-)val) ;

inorder (root - >right) ;

]

6.3 Post Order Traversal

iiiff,e6

string:

A post order traversal prints the contents ofa sorted tree, in post

of the left subtree are printed first, followed by right subtree and
in figure, an in order traversal would result in the following string:

following

order. ln other words, the contents

finally the root node. So as shown

ADCIHKJF'.

!:,{o!#i"#t"!it{##F"{iE{'ffiffi

Post order Traversal

i. Traverse left subtree

ii. Traverse right subtree

iii. Do operation on root of the tree

void postorder (struct node *root)

{

if (root ! =NULL)

t
postorder (root- >left) ;

postorder (root- >right) ;

printf ("8dr', root -)val-) ;

]

]

6.4 Iterative Traverslng

All the above recursive methods are implemented using recursive function. As we know recursive

functions are executed by using stack. To execute above traversing methods stack space,

proportional to the depth of the tree, is required. One of the methods to implement iterative

traversing is to use staclg but to store intermediate nodes at different level instead of using it for

recursion. Recursive traversal may be converted into an iterative as follows.

ffidfrtrpipg_bgc',,1.,,,,,,

Iterative Preorder Traversal

Algorithm

i. Push the root node into stack.

ii. Consider the top item as current node from stack.

iii. Print the value of curent node.

iv. If left child of current node is not NULL.

a. Push the left child of current node into stack.

else

If right child of current node is not NULL.
Push the right child of current node into stack.

else

c. Pop the topmost node from stack.

d. Repeat step no. 2 till stack gets empty.

void Preorder (rootNode)
{

nodeStack . push (rootNode)
while (I nodestack. empty ())

{

currNode = nodeStack.peekO /*peek at
printf ('Zd', currNode- >value)
if ((currmode-)left) l= NULL)

nodeStack. push (currNode - > 1ef t;7'tp,r3
el-se
if ((currNode->right) != NULL)
nodeStack. push (currNode - > right)

else
nodestack.popo /* any do this if v,e di&r't p,shr arrvttLing on stacl< */

lnorder Traversal

Push the root node into stack.

Consider the top item as current node from stack.

b.

. top item*/

the nexL l-evel of cal-ls on stack */

Data Strucfure Using C

iii. If left child of current node is not NULL'

a. Push the left child of current node into stack'

else

If right child of current node is not NULL'

b. Push the right child of current node into stack'

else

c. PoP the toPmost node from stack'

d. Print the value ofcurrent node'

e. Repeat step no. 2 till stack gets empty'

void Inorder (rootNode)

i
nodestack . Push (rootNocle)

while (lnodestack. empty ())

{

currNode = nodestack.peekO/*peek at top
if ((currNode-)left) != NULL)

nodeStack.push (currNode- >left) /*Put the
calls on stack *,/

ef se
if ((currNode-)right) ! = NULL)

nodestack . push (cur rNode - > r ight)

e1 se

t

nodeStack.Pop0 /" OnlY do this if
anYthing on stack */

printf ("%d", currNode- >value) ;

i
i

]

Iterative Post Order Traversal

Algorithm

i. Push the root node into stack.

ii. Consider the top item as current node from stack'

i tem* /

next fevef of

we didn't Push

,
",,

.t::.,;. .; .";i,;;i'r.::.,r,.i,filffi

iii. If left child of current node is not NULL

a. Push the left child of current node into stack.

else

If right child of current node is not NULL.

Push the right child of current node into stack.

else

Print the value ofcurrent node.

Pop the topmost node from stack.

Repeat step no. 2 till stack gets empty.

void Postorder (rootNode)

t

nodeStack . push (rootNode)

whi]e (InodeStack. empty O)

{

currNode = nodeStack.peek O /*peek
if ((currNode-)left) != NULL)

nodeStack. push (currNode - >l-ef t) /*2t
else
if ((currNode- >right) ! = NULL)

nodeStack. push (currNode - > r ight)
efse

t

printf ("2d", currNode - >value)

nodestack.popO /*onfy do this if
]

at top item*,/

the nexL l-evel of cafl-s on stack

we didn't push anything stack */

b.

c.

d.

e.

Patar.S!rudure' U-si1ig,G rTt*Hf

7. Binary Search

The binary search is the standard method for searching the required element through a sorted array.
It is much more efficient than a linear search, where we sequentially go through the array elements
until the target is found. Binary search requires that the elements in an array should be in order.

The binary search repeatedly divides the array in two parts and each time restricting the search to the
half part that contains the target element.

Here the binary search algorithm is implemented using array which is having static memory
allocation. The binary search algorithm can also be implemented using data structures with dynamic
storage and allows searching to be done efflrciently. A linked list structure is not efficient when
searching for a specific item as the node can only be accessed sequentially.

7.1 Binary Trees and Binary Search Trees

Binary search tree is a special kind of tree, which is ideal for storing
data for efficient searching. The binary search tree is a hierarchical
structure in which data is accessed similar to a binary search

algorithm.

A binary search tree is itself a special kind of binary tree. A binary tree is a tree which is either
empty or consists of a node called the root, together with two children called the left subtree and the
right subtree of the root. Each of these children is itself a binary tree.

A binary search tree satisfies the following additional conditions:

i. Each element has a key value which is used to order the elements.

ii. The keys of all the elements in the left subtree of the root are less than the key in the root.

iii. The key in the root is less than all the keys in the right subtree.

iv. The left and right subtrees of the root are again having a structure of search trees.

v. The tree must be searched to determine where the node is present having required value to be
searched.

4pr.2012- 2M

What is a Binary Search
Tree?

Data $Jruduro'tlFlrgg

Algorithm

i. Compare the given key value first to the root node of the tree.

ii. If the value of the key is'less than the value of the root node

if the left subtree is not empty, the search continues down the
left subtree.

else display the message of not found and quit.

If the value of the key is greater than the value of the root
node.

if the right subtree is not empty, search process continues down the right subtree.

else display the message of not found and quit.

If the key value not exists in the tree, then terminate the procedure.

struct Node * BSearch(Node *root,
{ while (root I - NULL)
i if(root-)data == key)

ret.urn n;
nerant=7nn l-.

if (root -)data > key)
rooL = root-)l-eft;
el se
root : root-)right;

]
return NULL;

'i nf kcrr)

::i;::i.:ii;:iji

od.rolr *4M
Write an algorithm for
Binary Search tulethod.

As.explained in algorithm, the function BSearch is defined to seareh given key value in a Binary

Search Tree. Firstly, the tree is checked whether it is'empty or not. If tree is not empty, the key is

compared with the value at root node. If it is less than value at root, the left child is selected and it is

considered as root else if it is greater, the right child is considered as root and same process is

applied. If key value is exactly equal to root or some other node, the node will be returned by the

function else NULL value will be returned as element is not found.

/+ Program to Implement Binary Search Ttee*/
#include(stdio. h>

#incfude<conio . h>

struct node

t
struct node*l-eft;
lnt vafue;
struct node*right;

\;
struct node *root, *parent, *newNode;

/* Define the functions for Create, Insert, BSearch, Delete Preorder,
Inorder and Postorder functions discussed above */
void maino
i
int ch, a;
do
{.

clrscr () ;
pr intf (" 1 . Inser t\n2 . search\n3 . Delete\n4 . Traver se\n5 . Exit\n") ;
printf ("\nEnter Your choice: -'r) ;

' scanf ("?d", &ch) ;

if (ch==1)

i
newNode=Create () ;
Insert (root,newNode- >val-ue) ;

]
if (ch==2)

{

printf ("Enter val-ue to be searched z - ") ;

scanf ("%d", aa) ;

newNode=BSearch (root, a) ;

if (newNode==NULLT
nrintf ("P.1ement not found");yr rtru! \ !+vrrrv..

efse

tiiiiiji!i!i!i!!;,:,ffi

orintf ("Ef ement Found'..") ;

]
(cn==J/
i

nrintf ("trnf.er value toPr +rru!

scanf ("2d", &a) ;
newNode=BSearch (r oot, a)

if (newNode==NULL)
printf ("Element not

eI se
Defete (newNode) ;

]
if (ch==a)

{
printf ("1. Preorder\n2' Inorder\n3 . Postorder\n")

nri nf f (,,\nEnf cr vrrllr r-hoi ee: -',) ;I/rfIILr \ \1rllruvr Jvs!

scanf ("?d", &a) ;

if (a==1)
Preorder (root) ;

if (a==2)
Inorder (root) ;

if (a==3)

Postorder (root) ;

] while(ch<s) ;

]

AVL Trees

AVL trees are self-adjusting, height-balanced binary search trees and are named after the inventors:

A,delson-Velskii and Landis. An AVL tree is a special type of binary tree that is always 'partially'

balanced. The criteria that is used to determine the 'balanced-ness' is the difference between the

heights of subtrees ofa root in the tree.

The 'height' of tree is the 'number of levels' in the tree. Generally, the height of a tree is defined as

follows:

i. The height of a tree with no elements is 0

ii. The height of a tree with I element is I

iii. The height of a tree with > 1 element is equal to I + the height of its tallest subtree.

if

be searched: - ") ;

found") ;

An AVL hee is a binary tree in which the difference between the height of the right and left subtrees
(or the root node) is never more than one. The height of a binary tree is the maximum path length
from the root to a leaf. A single-node binary tree has height 0, and an empty binary tree has
height -1. As another example, the following binary tree has height 3.

As discussed above, an AVL tree is a binary search tree in which
every node is height balanced, that is, the difTerence in the heights
of its two subtrees is at most l. The balance factor of a node can be
calculated as the height of its right subtree minus the height of its
left subtree. Hence in AVL tree each node has a balance factor of -1.
0, or *1. Note that a balance factor of -l means that the
left-subtree is heavy, a balance factor of +l means that the right-
subtree is heavy and a balance factor of 0 means that both left-
subtree and right-subtree are having same height.

For example, in the following AVL tree, node.

That the root node with balance factor +l has a right subtree of height I more than the height of the
left subtree. (The balance factors are shown at the top of each node.)

A node with any other balance factor is considered unbalanced and requires rebalancing the tree. The
balance factor is either stored directly at each node or computed from the heights of the subtrees.
Whenever we insert or delete an item, the AVL fiee can be 'violated'. We must then restore it by
performing a set of manipulations called 'rotations' on the tree. These rotations are having two types:
single rotations and double rotations

In an AVL tree, the Balance Factor (BF) of a node means the difference between the heights of the
left and right subtrees of the node must be -1, 0 and l. If any node has a balance factor other than
these values then the rotations are required to balance the tree.

Oct.14,12- 2M

What is Balance Facto*
How it is calculated?

ilI.

The four rotations performed to balance s tree are

i. LL (Left ro left)

ii. LR (Left to right)

iii. RR (Right to right)

iv. RL (Right to left)

i. Left to Left Rotation (LL): This operation is required when
insertion in left subtree of left child of ancestor node
(Unbalanced node whose BF >1) is occurred.

ii. Right Rotation (RR): A right rotation is a mirror of the left
rotation operation described above. This operation is required
when insertion in right subtree of right child of ancestor node
is occurred.

tv.

Left-Right Rotation (LR): Sometimes a single left rotation is not sufficient to balance an
unbalanced tree. This operation is required when insertion of a new node in right subtree of
left child of ancestor node is occurred. In this method, RR rotation has to be applied on the
node nearest to the pivot and newly inserted node. Then LL rotation has to apply on the pivot
node.
Right-Left Rotation (RL): This must be performed when attempting to balance a tree which
has a left subtree that is right heavy. ln this method, LL rotation has to be applied on the node
nearest to the pivot and newly inserted node. Then RR rotation has to apply on the pivot node.

ider the all rotations.
LL

RR

Octlsfipr.ll- 4M:
Explain different types of
AVL Rotations with an
example.

Nr.207i-4M
What is height-balanced
tree? Explain LL ard RR
rotiations.

LR

RL

Solved Examples

1. Build on AVL Tree for the following data:

Mon, S{IN, Thur, Fri, Sat, Wed, Tue-

Solution
Function to find height ot br tree

11 Mon

@
rebalancingNo

needed

22. Sun G"D

LY,)

rebalancingNo
needed

After applying RR
rotation

After LL rotation

After RR rotation

Apply RL rotation.
Apply LL on Wed.

Give the Preorder, Inorder and Postorder Traversal
of the following trees:

P-.ff

ii.

Solution

Consider root is denoted by N, left subtree as L, right subtree as R.

i. Preorder Traversal (NLR)
a. Visit the root.

b. Traverse the left subtree ofroot in preorder.

c. Traverse the right subtree ofroot in preorder.

ii. Inorder Traversal (LNR)
a. Traverse the left subtree ofroot in inorder.

b. Visit the root.

c. Traverse the right subtree ofroot in inorder.

iii. Postorder Traversal (LRN)
a. Traverse the left subtree ofroot in postorder.

b. Traverse the right subtree ofroot in postorder.

c. Visit the root.

According to the above rules,

Consider thefirst given tree

i. PreorderTraversal: 1,2,4,5,7,3,6
ii. lnorderTraversal: 4,2, 5,7, l, 6,3
iii. Postorder Traversal: 4,7 , 5,2, 6,3, l

ider the second given tree,

Preorder Traversal: 7,, 2, 4, 5, 6, 3, 7, I
lnorder Traversal: 4, 2, 5, 6, l, 7, 3, 8

Postorder Traversal: 4, 6, 5, 2, 7, 8, 3, 7

Tres

3. Write the recursive functions of Pre'order and Post-order

Traversal in a BST.

Solution

In preorder traversal method, sequenco of traversing the nodes is

visit the root value first, then visit left and lastly visit right child.

In case of postorder traversal method, sequence of traversing the nodes is visit the left child first,

then visit right child and lastly visit the root value.

Preorder(NlR) and Postorder(LRN) traversal methods using recursive functions for BST are iN

follows,
void preorder (struct node *pt,r) / * it f ol-1ows the NLR (Root -

)Lefr- >Right; *7
t

if (root==NULL)
{

^-in|-f /tr'l'raa iq cmntwlr)'
frrfrrL! \ vrrrYeJ

IeElrrn;
]
if (ptr l=NULL)
{

nrinff ("*.1 rt.nfr->info) ;f/Ilrru! \ ,yeL

preorder (ptr - > lchild) ;
preorder (ptr - >rchild) ;

]
]/*End of preorder O */
void postoider(struct node *ptr) /* it follows the LRN (Left-
>Right - >Root) */
{

if (root==NULL)
t

nri nf f {r'Tree is empty"),'y i r rr v ! \

return;
]
if (ptr !=NULL)
{
inorder (ptr - > lchi Id) ;

inorder (ptr -) rchi 1d) ;
printf ("8d ",Ptr->info) ;

]
] /*End of postor der O * /

4. .Write a program to construct a Binary Search Tree and

Traverse using Inorder and Preorder Traversal.

Solation
#include(stdio. h>
#incfude(ma11oc . h)

struct node ,/* structure of node in binary search ttee * /

ffi
int inf o,'
struct node *fchifd;
struct node *rchifd;

] *root;
main ()

{

/*main function */

int choice,num;
root=NULL;
while (1)
{

printf("\n");
printf ("1 . Create\n") ;
printf ("2 . Inorder Traversaf\n") ;
printf ("3 . Preorder Ttavetsal\n") ;
printf ("4 .Disp1ay\n") ;
printf("5.Quit\n");
printf("EnLer Your choice : ");
scanf (r' 8d't , &choice) ;

switch (choice)
t
case 1: printf("Enter the number to be

scanf ("8drr,&num);
insert (num) ;

break;
case 2: inorder (root) ;

break;
case 3: Preorder (root) ;

br eak;
case 4: disPlaY (root,1) ;

break;
case 5: exit () ;
default: printf ("Wrong choice\n") ;

]/*end of switch */
] /*nnd of while */

l /*End of main () */

inserted : tt) ;

/* tina function shows the
tree * /

find(int item,struct node
{

struct node *Ptr,*Ptrsave;
if (root==NULL) /*Lree empty*/
{

*Ioc=NULL;
*pa1=NULL;
return;

J

if(item==rooL->info) /*item is at root*f

proper position of new node

*'tpar, struct node **f oc)

to insert in

F#
{

*loc=root,.
xpar =NULL;
return;

]
/*tnitiali ze pLr and ptrsave*/
if (iteminfo)

ptr=root->lchild;
else

ptr=root->rchild;
ptrsave=root;
while (ptr !:NULL)
{

if(item==ptr->info)
, *1o.=ptr;

xpar =ptr save;
return,.

]
ptrsave=ptr;
if (iteminfo)

ptr=prr - >lchild;
ef se

ptr=ptr -)rchifd;
]/*rno of whife */
*loc=NULL; /*iLem not found*/
nar=nf rcarra.. y- yu!usve,

i /*End of find () */
insert (int item) /* insert funcLion inserts new
lroo * /

i
sLruct node *tmp, *parent, *location;

find (item, &parent, efocation) ;
1f (focation I :NULL)
{

printf ("Item alread.y present',) ; .

return;
i
tmp= (struct node *)mafloc (sizeof (struct node)) ;
tmp- >info=item;
tmp-)lchild=NULL;
tmp-)rch11d=NULL;
if (parent-==NULL)

r oot = tmp;
el se

if (item< parent- >info)
parent - > 1chi1d=tmp;

el-se
parent - >rchild=tmp;

Trws

node at ii-c nncitinn i-

pak,sr{t
ry

i /*End of insert O */
preorder (struct node
{

if (root==NULL)
{

ptr) / it folfows the NLR (Root - >Left - >Right; *7

Printf ("Tree is empty") ;
return;

(pt.r !=NULL)

printf (,'Bd,,,ptr->info)
preorder (ptr - >lchifd) ;
preorder (ptr - >rchild) ;

]
] /*End of preorder. O * /
inorder (struct node *ptr) /*
{ if (root==NULL)

{

it fofl_ows the LNR (Lefr-)Root- >Right) */

Printf ("Tree iS emnf\/rr') .

return;

(ptr l=NULL)

inorder (ptr - >lchild) ;print.f (',?d ",ptr->info) ;
inorder (ptr - >rchild) ;

i
i /*End of inordet O * /
dlsplay (struct nod.e *ptr , int level)
i

inL i;
if (pLr !=NULL)
{

displ-ay (ptr - >rchild, levef +r) ;
Printf ("\n") ;
for (i = O; i (Ievel; i++)

Printf(" ");printf ("8d", ptr - >info) ;
display (ptr - >lchild, l-evel_+1) ;

] /*rnd of if* /
i,/*End of display O * /
5. Define Height Balance Tree. Built an AVL tree for the

following data:

Jano Feb, Mar, Apr, May, June, July

]
if
i

]
if
i

W
Solution

A height-balanced tree is a datastructure hee which keeps its children similar in height to within

some defined limit. For example, children of an AVL tree differ in height by at most l'
A tree whose subtrees differ in height by no more than one and the subtrees are height-balanced, too'

An empty tree is height-balanced.

since the given tree is a binary search tree, so insert the data according to the alphabetical position in

the tree.

No re-balancing
needed

No re-balancing
needed

No re-balancing
needed

No re'balancing
needed

.:t ,,-t ,, ,:TSH

No re-balancing
needed

No re-balancing
needed

6. Write a function to count number of nodes in a given tree.
Solution
Function to count number of nodes in a given tree.
int count (node *t)
t
stack s;
r nl- ^^irnl- = n.

while (t !:NULL)
{

count = count +1;
s.push(t);
t=t-+1ef t;

]
while(ts.emptyO)
{

t=s.pop O ;
t = t-+r ight ;
while (t ! =NULL)
{ count : count +1;

s.push (t) ;

t,=t-+1ef t;
i

]
return (count)
]

7. Construct Binary Search tree for following data:
Jan, Oct, Dec, Nov, Feb, Mar, Apr, Sept, May, Jul, Jun'
Aug

Solution

i. Jan

q'
b

0

R'6b00

@
0

P,,ata sructure usrls g-

vi. Mar

vii. Apr

Jan

Dec Ocl

i.t-1
f"9 lqg9o,,r/

,/ ail;)'

xi. Jun

xii. Aug

RL.
0

-1

Data Structure Using C Trees

WPU ouestions
l. What is Ancestor of Node?

2. What is use of tree? How it is differ from linked list?
3. What is balance factor? How it is calculated?
4. State different types ofTraversal Technique ofTree.
5. What is Balance Factor? How it is calculated?
6. What is a Binary Search Tree?
7. Define the following terms: Height of a Tree
8. Define Binary Tree.

9. Define o'Degree of a Tree".
10. Define Almost Complete Binary Tree.

l.

IOct.14.Apr.15 - 2Ml

lOct.14.Apr.15 - 2Ml

1Oct.14.12- 2Ml

lOct.2012 - 2Ml

tOct.2012- ZMl

IAor.201?.-2M

lApr.2012- 2Ml

IOct.2011 - 2M

lApr.2011 - 2Ml

lOct.2009 - 2,1,f1

IOct.2015- 4Ml

lOct.2015- 4Ml

tApr.2O15- 4Ml

IApr.2O15- 4M

IAor.2015* 4Ml

tOct.I4.Apr.11- 4W

IOct.2014- 4tull

IOct.2OI&- 4Ml

lOct.2012- 4Ml

tOct.2012- 4Ml

8.

9.

10.

Write the recursive functions to traverse a tree by using
inorder$, preorder0 and postorder0 traversing techniques.
Build AVL tree for the following data: FRI, MON, SAT,
WED, STIN, TUE, THUR I.
Write a function to count the number of leaf nodes in a tree.

Write a function to display mirror image of given tree.

What is heightbalanced tree? Explain LL and RR rotations.
Explain different types of AVL rotations in details.
Construct Binary Search tree for following data: Jan, Oct,
Dec, Nov, Feb, Mar, dpr, Sept, May, Jul, Jun, Aug
Write a function to count number of nodes in a given tree.

Build on AVL Tree fbr the following data: Mon, Sun, Thur,
Fri, Sat, Wed, Tue.

Cive the Preorder, lnorder and Postorder Traversal of the
following trees:

i.

ll.

IAPr.2O12 - 4Ml

|Apr.12.11.Oct1O - 4Ml

lOct2011 - 4Ml

lOct2011 - 4Ml

I9ct2O11 - 4Ml

lOct2011- 4Ml

tOct.2011 - 4Ml

IOct.2011- 4Ml

LAor.2011 - 4Ml

lAor'2011 - 4Ml

lAor.2011 - 4Ml

lOct2ol0 - 4Ml

1Oct.10.09 - 4Ml

lAor.2010 - 4Ml

IOcL2009 - 4Ml

19.
20.

I l. Write the recursive functions of Pre-order and Post-order

Traversal in a BST.

12. Construct Binary Tree for the following data: 12'

30,6,7,25,10, 1 5, I 8,3 3

13. Write an algorithm for Binary Search Method'

14. what are the different types of Tree Traversal methods? Explain

any one with suitable examPle.

15. Write a program to construct a Binary Search Tree and Traverse

using Inorder and Preorder Traversal'

16. Define Height Balance Tree. Built an AVL tree for the following

data: Jan, Feb, Mar, APr, MaY, June, JulY

17. write a program to count Leaf and non-leaf nodes of a tree.

18. Construct Binary Tree for the following data: 12'

30,6,7,25,10, 1 5, I 8,3 3

Write a frrnction to find height of Binary Tree'

Construct AVL Tree for the following;

Avinash, Janardan, Suresh, Prashant, Mahesh, Amar, Anup'

Sachin, Sahdev, Vtjay, Dhurandhar, Nitin'
Construct a binary tree for the followingdata: 12,30,6, 7, 25'

10, 15, 18,33
Discuss different Tree Traversal Methods'

Construct Binary Search Tree for the following data and eive 1t
order, preorder and post order tree traversal: 20' 30,10, 5, 16'

21,29,45,0,15,6
write a c function to search element in a Binary search Tree.

Define Height Balanced Tree. Built an AVL Tree for the

following data: Sun, Mon, Tue, Wed, Thur'

o,
ulsl0ll

21.

22.
23.

24.

25.

eiafte/, 6

GRAPHS

Graphs

In computer science, a graph is a kind of data structure, that consist of a set of nodes (also called

vertices) and a set of edges that establish connections between the nodes. To denote mathematically,
graph G: (V, E) consists of vertices, V, which are connected by edges, the elements of E. Formally,

V is a set (usually finite) and E is a set consisting of two subsets of V.

1.1 Definitions and Terminology

Graph
A graph G is a collection of two sets V and E. V is a finite non empty set of vertices (or nodes) and
E is a finite non empty set of edges (or arcs) connecting a pair of vertices.

An edge is represented by two adjacent vertices G is represented as G : (V, E)

Data Struciure Using C

Example

Graphs

G,= (VE)
V = { V,, V, V., Vo}

E = { (V,, Vn), (V,, V,) }
(v3 , vo), (v., v,))

v1
/l'*\

v.

Types of Graphs

i. Undirected Graph: A graph is an undirected graph if the

pairs of vertices that make up the edges are unordered pairs.

i.e. an edge(V1, V) is the same as (\, V1). The graph G1

shown above is an undirected graph.

ii. Directed Graph: ln a directed graph, each edge is

represented by a pair of ordered vertices, i.e., an edge has a

specific direction.

In such a case, edge (Vi, \) + (V;, V;),

Example

Directed graph

vl

V, vo

XT
G, G3 G,

Some examples of graphs: Graphs are two types, Undirected graph and Directed graph.

Fpr.2015 - 2M
State the types of
graphs.

Oct.2015- 4M
What are the different
ways we can represent
graph? Explain any one
with an example.

ut.

tY.

nata,,Sln6{9,$$6{1. :::
:

G5: (V, E)

v - {vr, v2, vr, %}
E : {(V,, %), (V,, %), (V 2,V 4),

(V" V3)}

For an edge (V; \) in a directed gaph, vertex V1 is called the tail and Vj is the head of the
edge. V1 is adjacent to V.; and \ is adjacent from Vi.

Complete Graph: If an undirected graph has n vertices, the maximum number of edges it can
have, nC, : n (n - l)/2.If an undirected graph G has 'n' vertices and nC, edges, it is called a

complete gaph.

lf the graph G is directed and has n vertices, G is complete if it has n(n - l) edges.

Multigraph: A multigraph is a graph in which the set of edges may have multiple occurrences
of the same edge. Note that it is not a gaph.

Example of a multigraph that is not a graph

Degree of Vertex: The degree of a vertex in an undirected graph is the number of edges
incident to that vertex.

In the undirected graph G1, the degree of each vertex:2.

Indegree of a Vertex: If G is a directed gaph, the indegree of a vertex is the number of
edges for which it is head i.e. the numberd edges coming to it.

Example

In graph Gr, indegree (Y+):2
indegree (Vt):0

A node whose indegree is 0, is called a source node.

Outdegree of a Vertex: If G is directed graph, the out degree of a vertex is the number
of edges for which it is the tail i.e. the number of edges going out of it.
Example

outdegree (V'): 3

outdegree (Vz): I

DataStrudure Using C Graphs

A node whose outdegree is 0, is called a sink node.

o Adjacent Vertices: If (V1, \) is an edge in G, then we say that

Vi and \ are adjacent and the edge (Vi, Y) is incident onYi
and V;.

o Path: A path from vertex Vo to Vo exists if there exists

vertices V',, V,r,1/in such that there exist edges (Vo, V1,),

(V',, V'r),.........(V'", Vo)

Length of a Path: The length of a path is the number of edges on it.

Lineqr Path: A linear path is a path whose first and last vertices are distinct.

. Cycle: A cycle is a path whose first and last vertices are the same.

Example Vr Vz V: Vq is a cycle in G+. - A graph with no cycles is called an acyclic

graph.A directed acyclic graph is calleddag.

Connected Graph: Two vertices V; and \ are said to be connected if there is a path in G
from Vl to \.
Strongly Connected Graph: A directed graph G is said to be strongly connected if for every

pair of distinct vertices V; V;, there is a directed path from V; to V1 and also from \ to V1.

Weakly Connected Graph: A directed graph G is said to be weakly connected there exists

atleast one set of distinct vertices Vi, Vi, such that there is a directed path from Vi to \ but no

path from \ to V;.

Example: The following is a weakly connected graph because there is a path from V1 to V+ but

none from V+ to Vr.

v.

G5

Subgraph: A subgraph of G is a graph G'such that V(G') c V(G) and E(G') c E(G)

Example:The subgraphs of G1 are:

rn 6) aD,/q.--1 \ q.. ,7e@\Gr
Subgraphs of Gr

vl.

Oct.2O1O- 4M

Define the following
terms:
i. Cycle in a Graph
ii, Adjacent Vertices
iii- lndegree of Graph

Data Struclure Using O

vii. Forest: A forest is defined as an acyclic graph in which every
predecessors.

viii. Spanning Tree: When a graph G is connected, a traversal
method visits all its vertices. In this case the edges of G are
partitioned into two sets.

T for the edges traversed.

B (Back edges) which were not traversed.

The edges in T form a tree which connects all vertices of
graph G. Such a tree is called a spanning tree.

A spanning tree consists of the minimum number of edges to connect all the vertices.

Example

GraPhs

node has one or no

il=v
graph (i) (ii)

Spanning trees

A graph and its spanning trees

(iii)

ix. Minimal Cost Spanning Tree: The spanning tree having the minimum sum of weights of
edges is called minimum cost spanning tree.

These weights may represent the lengths, distances, cost, etc.

Such trees are widely used in practical applications such as network of road lines between

cities, etc.

x. Spanning Forest: A spanning forest of a graph G : (V, E) is a collection of vertex disjoint
trees T1 : (V; Ei), l< i < k such that V : u Vi for all 1< i < k and E; c E(G), l< i < k

Apr.2O11 - 4M
Define the following
terms:
i. Spanning Tree
ii. Cycle in a Graph
iii. Adjacent Vertices
iv. In degree of Graph

Data Structure Using,G

1.2 Representation of Graph

The graph can be represented with several forms as Adjacency Matrix and Adjacenq'

Adjacency Matrix lm plementation

Definition: Adjacency matrix is a representation of both directed and undirectt

dimensional aurray n x n elements where n is the number of vertices.

A lvl x lVl matrix of 0's and I's.

This indicates value stored at any location is either 0 or I where 1 represents a 'l

and 0 indicates no edge between vertices. The position is indicated by [u, v] u '

Graphs

iryrlr using two

re,Jtion or an edge

u €V, v eV.

Non-directed graph

For a non-directed graph there will always be having symmetry along the top left to bottom right

diagonal. The diagonal will always be filled with zero's.

In adjacency matrix it is easy to calculate degree of vertex, where degree is nothing but number of
vertices connected to it. As in adjacency matrix I is placed at partictilar position i.e. u, v, if edge is

present between the vertices u, v. Hence degree of vertex v can be easily calculated as sum of all the

ls present at the row that is represented by vertex u.

Adjacency Matrix

A B c,, D. E

A 0 1 1 1 0

B 1 0 1 0 0

c 1 1 0 1 1

D 1 0 1 0 1

E 0 0 1 1 0

Apr.2O15 - 4M
What is graph? Explain
its representation
techniques in details.

Data Structure Using C Graphs

For example degree of vertex D is 3.

Directed graph

For a directed graph there will not symmetry along the top left to bottom right diagonal. Also the
diagonal will always be filled with zero's.

In directed graph, the vertex is having two types of degrees i.e. indegree and outdegree.

1. Indegree: lndegree can be defined as number of edges that coming in at vertex from other
vertices. Hence indegree of vertex u is nothing but sum of ls in the column that represents

vertex u. For example.' indegree of vertex D is l.

2. Outdegree: Outdegree can be defined as number of edges that going out from vertex to other
vertices. Hence, outdegree of vertex u is nothing but sum of ls in the row that represents

vertex u. For example:outdegree of vertex D is 2.

{.3 Adjacency List lmplementation

Adjacency List lmplementation (non-directed graph)

Definition: An adjacency list is also a representation of an undirected and directed graph with n
vertices usingan arrayof n lists of vertices. List icontains vertex j ifthere is an edge from vertex i to
vertex j. An undirected graph may be represented by having vertex j in the list for vertex i and vertex

i in the list for vertex j.

Adjacency Matrix

A B c D, r
A 0 1 1 0 0
B 0 0 1 0 0
c 0 0 0 1 0
D 1 0 0 0 1

E 0 0 1 0 0

trara..sltqF Gralhs

The Adjacency list implementation typically uses less space than the adjacency matrix

implementation. It is exactly like hashing with chaining where we have a list (array) of vertices, each

of which stores a linked list of all of its neighbors

lnffi
I e |_-1-nTffiE*ruur-r-

loffiruur-r-
I r f-+ls tH !EF+ NuLr-

Adjacency list

In non directed graph using adjacency list it is easy to calculate degree ofvertex which is nothing but

number of nodes present in its linked list.

For example, degree of vertex C is 4.

Adjacency List lmplementation (directed graph)

tlI n |_-dETffiFF> ruurr

I B l--+l c l-P NULL

Directed graph

AdjacencY list

This method is very good for problems that involve traversing a graph. Storage : lVl header

cells * 2lEl linked list cells (since each edge in an undirected graph is counted by both vertices that it
connects). In a directed graph the 2lEl is replaced bV lEl. For a graph it is much better to use the

adjacency list implementation with the storage (lvl + 2lEl) versus storage of lVl' for the adjacency

matrix implementation.

Nondirected graph

-
I c F--+l D lf NULL

I o Hd-#-=ll*
I e tsl c l-|> NULL

,P.Atar$t tflsitU3ftg'G Graphs

In directed graph using adjacency list indegree for vertex V can be calculated as the number of times,

the vertex V presents in all the linked list.

For example, degree of vertex C is 3.

Similarly outdegree of vertex V can be calculated as the number of nodes present in the linked list of
vertex V.

For example, outdegree of vertex C is 4.

Comparison with other Data Structures

Graph data structures are non-hierarchical and therefore suitable for data sets where the individual
elements are interconnected in complex ways. For example, a computer network can be modeled

with a gaph. Hierarchical data sets can be represented by a binary or non binary tree. It is worth
mentioning, however, that trees can be seen as a special form of graph.

2. Shortest Path Problem

For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e. the

shortest path) between that vertex and every other vertex. It can also be used for finding costs of
shortest paths from a single vertex to a single destination vertex by stopping the algorithm once the
shortest path to the destination vertex has been determined. For example, if the vertices of the graph

represent cities and edge path costs represent driving distances between pairs ofcities connected by a
direct road, the following algorithm can be used to find the shortest route between one city and all
other cities. As a result, the shortest path first is widely used in network routing protocols.

Atgorithm

Let's call the node we are starting with an initial node. Let a distance of a node X be the distance
from the initial node to it. This algorithm will assign some initial distance values and will try to
improve them step-by-step.

i. Assign to every node a distance value. Set it to zero for our initial node and to infinity for all
other nodes.

ii. Mark all nodes as unvisited. Set initial node as current.

iii. For current node, consider all its unvisited neighbours and calculate their distance (from the

initial node). For example, if current node (A) has distance of 6, and an edge connecting it
with anothernode (B) is 2, the distance to B through A will be 6+2:8. If this distance is less

P.ata.Stru.ttiire Using, G Sraphs

than the previously recorded distance (infinity in the beginning, zero for the initial node),

overwrite the distance.

iv. When we are done considering all neighbours of the current node, mark it as visited. A visited

node will not be checked ever again; its distance recorded now is final and minimal.

v. Set the unvisited node with the smallest distance (from the initial node) as the next 'current

node' and continue from step 3.

3. Spanning Tree

In the mathematical field of graph theory, a spanning tree T of a connected, undirected graph G is a

tree composed of all the vertices and some of the edges of G. Informally, a spanning tree of G is a

selection ofedges ofG that form a tree, spanning every vertex. That is, every vertex lies in the tree,

but no cycles (or loops) are formed. On the other hand, every bridge of G must belong to T.

Spanning tree - 1 Spanning tree - 2

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that

contains no cycle, or as a minimal set of edges that connect all vertices.

hr certain fields of graph theory it is often useful to find a minimum spanning tree of a weighted

graph. Other optimization problems on spanning trees have also been studied, including the

maximum spanning tree, the minimum tree that spans at least k vertices, the minimum spanning tree

with at most k edges per vertex (MDST), the spanning tree with the largest number of leaves

(closely related to the smallest connected dominating set), the spanning tree with the fewest leaves

1 .ruc*ure thing c

:lt'ely related to the Hamiltonian path problem), the minimum diameter spanning tree, and the
iiii:umum dilation spanning tree.

We shall be studying two algorithms for finding the Minimum Cost Spanning tree.

i. Prim's Algorithm: This algorithm builds the minimum cost spanning tree edge by edge. The
edge to be included in the tree T is chosen according to some optimization criteria. The
criterion used here, is to select the edge (u, v) having the smallest cost such that (u, v) is not
already in the tree and T u {(uv)} is also a tree.

While including (u, v) we must ensure that it does not form a cycle. The edge addition is
repeated till T contains n-l edges.

Let us apply this method to the following graph to obtain its minimum cost spanning tree.

Graph for Prim's Algorithm

Step,
Edges wtrich have exactly
one end belonging to the

partial @o
$elect $Banning frse

1. Vr (Vr, Vz)(Vr,Vo) (v1' v6)

(v

ol

l
l

l

IV

2. Vr, Vo (Vr, Vz)(Vs,Vo) (v_, v^)
' 5 b'

ltu.'\

Y
ol

I

I

I

c)- .. o

tr :u.qif,S€

3. Vr, Vs, Vo (Vr, Vz)(Vs,Vz) (V+, Vs) (v4' v5)

4. Vr, Va, Vs, Vo (Vr, Vz) (Vs, Vz) (V+, Vz) (Ve, Va) (v3' v4)

5. Vr, Vg, V+, Vs, Vo (Vr, Vz) (Vz, Va) (Ve, Vz) (Vs, Vz) (v2' v3)

6. Vr, Vz, V:, V+, Vs, Vo (Vr , Vz) (Vr, Vz) (Va, Vz) (Vs, Vz) (V2, V7)

7. (v4' v7) Forms a cycle

8. (v5' v7) Forms a cycle

9. (v1' v2) Forms a cycle

Data Structure Using C Graphe

Atgorlthm PRIMS(E, Cost, n)
{

/x E is the set of edges in G, Cost is l_he
matrix, n are the number of vertices *,/
T:{0}; /* Start with vertex O and no edges
whife(T contains less than n-1 edges)

{

select(u,v) from E such that cost [u,v]if(u,v) is found then
AddvtoT
ef se
br eak;

is minimum and ueT and vdT

]
contains fewer than n*1 edges print No spanning tree)

ii. Kruskal's Algorithm: In the Prim's algorithm studied earlier, at any stage, the set of selected
edges must form a tree.

In the Kruskal's algorithm, however, the set of edges may not be a tree at all stages. The set
will generally be a forest and can be completed into a tiee iff there are no cycles in the set.
The edges will be considered one by one such that it has minimum cost amons the remainins
edges and does not form a cycle.

The method is simple. The spanning tree T is constructed edge by edge. We select the edges
one-by-one. We select an unvisited edge having smallest cost and add it to the partia1y
complete spanning tree. If the edge forms a cycle, it is not considered. When n-l edqes have
been added to the spanning tree, the process stops.

Example,

Graph for Kruskal's Algorithm

Arl-ieconnrr nact-

ir (r
]

Pql

1 (v1' v6)

@
@0

@@

?

L
2. (v3' v4) IB
3. 1v'Vr)

?V'l e
("?)(a

4. (%,vr)
?
'l

G)
5. (V,' V') Forms a Cycle, Reject

6. 1vo, Vu)

7. (v^, v,) Forms a Cycle, Reject

8. 1vu, V.)

I
.l

A-

nata Etructu€,U-$irig S Graphs

The Algorithm can be written as follows:

A l aari t-l-rm

{
't- = o'
while (T

{
choose edge(u,v) from E
delete(u,v) from E
if(u,v)does not create a

add (u, v) to T
else

discard (u, v)
]
if(T contains fewer than n-1 edqes)

Print "no Snenn ino f roo,,
]

Comparing Prim's and Kruskat's Atgorithm

Both produce identical trees when edge weights are distinct. When G is connected, Kruskal's cannot
produce a forest. When no weights are equal, then random edge selection cannot occur.

Traversal of Graphs

traversal of graph means to visit the vertices in some systematic order. We have studied with
traversal methods for trees:

preorder: Visit each node before its children.

postorder: Visit each node after its children.

inorder (for binary trees only): Visit left subtree, node, right subtree.

are two other traversals: Breadth First Search (BFS) and Depth First Search (DFS). Both of
construct spanning trees with certain properties useful in other graph algorithms. These

ods can be used for both undirected graphs, but they are both also very useful for directed

Kruskal (E, cost, n)

/* sf.art with a Tree having no edges */
contains less than n-1 edges and E is

not empty)

such that cost [u,v] is mjnimum

cycre ln 1

Oct., Apr. 2O1O - 4M

Explain Kruskal's
Algorithm for minimum
spanning tree.

4.1 Depth-First Search (DFS)

Depth-First Search (DFS) is an algorithm for traversing or searching a tree, tree structure, or graph.

One starts at the root (selecting some node as the root in the graph case) and explores as far as

possible along each branch before backfracking.

Definition: Formally, DFS is an uninformed search that progresses by expanding the first child node

ofthe search tree that appears and thus going deeper and deeper until a goal node is found, or until it

hits a node that has no children. Then the search backtracks, retuming to the most recent node it

hasn't finished exploring. ln a non-recursive implementation, all freshly expanded nodes are added to

a stack for exploration.

Space complexity of DFS is much lower than BFS (breadth-frst search). It also lends itself much

better to heuristic methods of choosing a likely-looking branch. Time complexity of both algorithms

are proportional to the number of vertices plus the number of edges in the graphs they

traverse (O(lVl+ lEl).

When searching large graphs that cannot be fully contained in memory, DFS suffers from non-

termination when the length of a path in the search tree is infinite. The simple solution of "remember

which nodes I have already seen" doesn't always work because there can be insufficient memory.

This can be solved by maintaining an increasing limit on the depth of the tree, which is called

iterative deepening depth-first search.

For the following graph :

A depth-first search starting at A, assuming that the left edges in the shown graph are chosen before

right edges, and assuming the search remembers previously-visited nodes and will not repeat them

(since this is a small gaph), will visit the nodes in the following order: A, B, D, F, E, C, G. which is

sequentially shown in neighboring figure in sequence I to 7.

i. Output of a depth-first search: The most natural result of a depth first search of a graph (if it

is considered as a function rather than a procedure) is a spanning tree of the vertices reached

during the search. Based on this spanning tree, the edges of the original graph can be divided

into three classes: forward edgeso which point from a node of the hee to one of its
descendants, back edges, which point from a node to one of its ancestors, and cross edges,

which do neither. Sometimes tree edges, edges which belong to the spanning tree itself, are
classified separately fromforward edges.It can be shown that if the graph is undirected then
all ofits edges are tree edges or back edges.

Vertex Orderings: It is also possible to use the depth-first search to linearly order the vertices
(or nodes) of the original graph (or tree). There are three common ways of doing this:

a. A preordering is a list of the vertices in the order that they were first visited by the
depth-first search algorithm. This is a compact and natural way of describing the
progress ofthe search. A preordering ofan expression tree is the expression in polish
notation.

b. A postordering is a list of the vertices in the order that they were last visited by the
algorithm. A postordering of an expression tree is the expiession in reverse polish
notation.

c- A reverse postordering is the reverse of a postordering, i.e. a list of the vertices in the
opposite order of their last visit. When searching a tree, reverse postordering is the same
as preordering, but in general they are different when searching a graph.
For example, when searching the directed graph.

Beginning at node A, one visits the nodes in sequence, to produce lists either A B D B A C A,
or A C D C A B A (depending upon the algorithm chooses to visit B or C frst). Note that
repeat visits in the form ofbacktracking to a node, to check ifit has still unvisited neighbors,
are included here (even if it is found to have none). Thus the possible preordenngs are
ABDCandACDB(orderbynode'sleftmostoccurrenceinabovelist),whilethepossible
reversepostorderingsareACBDandABCD(orderbynode'srightmostoccurrencein
above list). Reverse postordering produces a topological sorting of any directed acyclicgaph.
This ordering is also useful in control flow analysis as it often represents a natural
linearization of the control flow.

are some algorithms where DFS is used:

Finding connected components.

Topological sorting.

Finding 2-(edge or vertex)-connected components.

Finding strongly connected components.

Solving puzzles with only one solution, such as milzes.

E#.i.t$tgduf p.t{Js-lrrs,e Grapha

4.2 Breadth-First Search (BFS)

The breadth first search is like shortest path algorithm, but with every edge having the same length.

However it is a lot simpler and doesn't need any data structures. In this method following things are

used.

1. A tree (the breadth first search tree),

2. A list of nodes to be added to the tree,

3. Markings (Boolean variables) on the vertices to tell whether

they are in the tree or list.

In graph theory, Breadth-First Search (BFS) is a graph search

algorithm that begins at the root node and explores all the

neighboring nodes. Then for each ofthose nearest nodes, it explores

their unexplored neighbor nodes, and so on, until it finds the goal.

How it works

BFS is an uninformed search method that aims to expand and examine all nodes of a graph or

combinations of sequence by systematically searching through every solution. In other words, it
exhaustively searches the entire graph or sequence without considering the goal until it finds it.

It does not use a heuristic.

From the standpoint of the algorithm, all child nodes obtained by expanding a node are added to a
FIFO queue. Intypical implementations, nodes that have not yet been examined for their neighbors

are placed in some container (such as a queue or linked list) called oopen' and then once examined

are placed in the container 'closed'.

Algorithm (informal)

i. Enqueue the root node.

ii. Dequeue a node and examine it.

If the element sought is found in this node, quit the search and return a result.

Otherwise ehqueue any successors (the direct child nodes) that have not yet been

examined.

iii. If the queue is empty, every node on the graph has been examined -- quit the search and return
o'not found".

iv. Repeat from Step 2.

a.

b.

Oct.l5,Apr. 15 - 4M
Explain BFS with an
example.

Apn2O10 - 4M

Explain Breadth First
Search with examPle.

Spanning tree - 1 BFS for spanning tree - 1

Spanning tree - 2 BFS for spanning tree'2

In the above example, two possible spanning trees are generated from given graph and according to
the algorithm; the nodes are traversed starting from the root node to its child node.

Applications of BFS

Breadth-first search can be used to solve many problems in graph theory,for example:

i. Finding all connected components in a graph.

ii. Finding all nodes within one connected component.

iii. Copymg Collection, Cheney's algorithm.

iv. Finding the shortest path between two nodes u and v (in an un-weighted graph).

v. Finding the shortest path between two nodes u and v (in a weighted graph: see talk page).

vi. Testing a graph for bipartiteness.

vii. (Reverse) Cuthill-McKee mesh numbering.

Relation between BFS and DFS

BFS and DFS are very closely related to each other. (In fact in class I tried to describe a search in
which I modified the 'add to end of list' line in the BFS pseudocode to 'add to start of list' but the
resulting traversal algorithm was not the same as DFS.)

Dda $tructure Using C Graphs

Both of these search algorithms now keep a list of edges to explore;

the only difference between the two is that, while both algorithms

adds items to the end of L, BFS removes them from the beginning,
which results in maintaining the list as a queue, while DFS removes

them from the end, maintaining the list as a stack.

5. Applications of Graphs

Some of the applications of graphs are:

i. Graphs are used to represent Mazes (using stacks)

ii. Graphs are used to diagrammatically represent Networks (computer, cities)

iii. Graph is used to represent geographic databases of Maps.

iv. Graph is used to prepare Graphics: Geometrical Objects

v. Graph is used to represent Neighborhood graphs and Voronoi diagrams.

Solved Examples

Example,

G: A weighted graph
T1: A spanning tree of G with cost 5+ 9: 14

T2: A spanning tree of G with cost l0 + 9: 19

T3: A spanning tree of G with cost 5 + 10: 15

.'. T1 with cost l4 is the minimal cost spanning tree of the graph G.

1. Explain minimal spanning tree with an example.

Solution

The cost of a graph is the sum of the costs of the edges in the
weighted graph. A spanning tree of a graph G : (V, E) is called
minimal cost spanning tree or simply minimal spanning tree of G if
its cost is minimum.

u
/\@o

r;\\r,

\10\\a;\iz,.---=-----tJ,
VVV

T
I2 T.

Data EtructurcUsing€ Graphs

WPuQuestions
What is graph? States its types.

State the types ofgraphs.

How to calculate indeeree and
graph?

Give the Adjacency Matrix and
following graph:

4.

l.
2.

J.

nJ.

4.

outdegree of nodes on

Adjacency List for the

lApr.2015- 2Ml

tOct.2014 - 2Ml

lAor.2012- 2Ml

tOct.11.09 - 2M

lOct.2015- 4M

lOct.2015 - 4Ml

lOct.15Apr.15 - 4M

IApr.215 - 4Ml

loct.2974 4M

lOct.2014 - 4Ml

19ct.2014- 4Ml

wl/ I

o-_-o
methods forList the different graph representation in

Write a function in "C" to traverse a graph using Depth
first search.

What are the different ways we can represent graph?
Explain any one with an example.

Explain BFS with an example.

What is graph? Explain its representation techniques in
details.

Write a function to read adjacency matrix and find the
node with maximum indegrees.

Write a function in "C" to traverse a graph using Breadtb
First Search technique.

Explain minimal spanning tree with an example.

1Oct.15.12 - 2Ml

t.

7.

lOct2012- 4Ml

IAor.2O12- 4Ml

lOct2011- 4Ml

IAor.2011 - 4Ml

lApr.2011 - 4Ml

IOct.2O10 - 4Ml

lOct.. Apr. 10. - 4Ml

IOct.2010 - 4Ml

lAor.2010 - 4Ml

lOct2009 - 4Ml

i::;!;i;;8

8. Write a function to calculate Indegree and Outdegree of each
Node in the Graph.

9. Differentiate between DFS and BFS.

10. What is graph? Traverse the following graph using DFS
(Stafi A).

I l. Define the following terms:

i. Spanning Tree ii. Cycle in a Graph
iii. Adjacent Vertices iv. In degree of Graph

12. Traverse following graph using BFS, Where starting vertex is 2.

13. Explain Depth First Search with an example.

14. Explain Kruskal's Algorithm for minimum spanning tree.

15. Define the following terms:

i. Cycle in a Graph

iii. lndegree of Graph

ii. Adjacent Vertices

Explain Breadth First Search with example.

Traverse the following

Define:

i. Degree of Graph

iii. Weighted Graph

0,
ut$t0tl

Cycle in a Graph

16.

17.

IOct.2009 - 4Ml lt9

using DFS (Start A):

Suggestive Readings:

1. Birkhanser-Boston, An Introduction to Data Structures and Algorithms, Springer-New

York

2. Seymour Lipschutz, “Data Structure”, Tata McGraw Hill.

3. Horowitz, Sahni & Anderson-Freed, “Fundamentals of Data Structure in C”, Orient

Longman.

4. Trembley, J.P. And Sorenson P.G., “An Introduction to Data Structures with

Applications”, McGraw- Hill International Student Edition, New York.

5. Yedidyan Langsam, Moshe J. Augenstein and Aaron M. Tenenbaum, “Data

Structures using C”, Prentice Hall of India Pvt. Ltd., New Delhi.

6. Mark Allen Weiss, “Data structures and Algorithm Analysis in C”, Addison - Wesley

(An Imprint of Pearson Education), Mexico City, Prentice -Hall of India Pvt. Ltd.,

New Delhi.

7. Rajni Jindal, Data structure using C, Umesh Publication

8. HorowitzE, Fundamental of data structure, Galgotia Publications

	bb2334e05f29add09f5b4cb87d628aa724cbf929cbeeeff7e2339f515fd7e7b1.pdf
	2ea37599cb8e23f5803e873190ab71ff09a66e2a03a6565041b501e8d5d305ca.pdf
	587f70a7041eec7f70982ae688d76040188911ffc453e06afacc9da9ee2e7ad1.pdf
	695be5ad44dc79809e78717d7f328b914dfea779de349fa8d7d20321cfda0b72.pdf
	Microsoft Word - Data Structure using C BCA SEM-3

