SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

Data Structure using C
Semester-I11
Author- B.J. Mohite

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Syllabus
Data Structure Using C

Learning Objective

- To teach efficient storage mechanisms of data for an easy access.

- To design and implementation of various basic and advanced data structures.

- To introduce various techniques for representation of the data in the real world.
- To develop application using data structures.

- To improve the logical ability

Unit 1

Introduction to data structures: storage structure for arrays, sparse matrices, Stacks and Queues:
representation and application. Linked lists: Single linked lists, linked list representation of stacks
and Queues. Operations on polynomials, Double linked list, circular list.

Unit 2

Dynamic storage management-garbage collection and compaction, infix to post fix conversion,
postfix expression evaluation. Trees: Tree terminology, Binary tree, Binary search tree, General
tree, B+ tree, AVL Tree, Complete Binary Tree representation, Tree traversals, operation on
Binary tree-expression Manipulation.

Unit 3

Graphs: Graph terminology, Representation of graphs, path matrix, BFS (breadth first search),
DFS (depth first search), topological sorting, Warshall’s algorithm (shortest path algorithm.)
Sorting and Searching techniques

Unit 4

Bubble sort, selection sort, Insertion sort, Quick sort, merge sort, Heap sort, Radix sort. Linear and
binary search methods, Hashing techniques and hash functions.

References

- Gilberg and Forouzan: “Data Structure- A Pseudo code approach with C” by Thomson
publication

- “Data structure in C” by Tanenbaum, PHI publication / Pearson publication.

- Pai: ”Data Structures & Algorithms; Concepts, Techniques & Algorithms “Tata McGraw
Hill. Reference Books:

- “Fundamentals of data structure in C” Horowitz, Sahani & Freed, Computer Science Press.

- “Fundamental of Data Structure” (Schaums Series) Tata-McGraw-Hill.

1. Basic Concept and Introduction to Data Structure
1. Pointers- An INtroduCtionc.oooeveeeemoeeeoeeooeoooooo
1.1 Usage of Pointer 1-3 1.2
2 Dynamic Memory AlOCAHONcuveeerereeceeeeeeceseeesseees s oeeooeeeoeeeseeeeeeoeoee
2.1 Dynamic Memory Allocation Functions 1-6
3. Algorithm Definition and Characteristics
4, Algorithm Analysis
4.1 Time Complexity 1-14
4.2 Space Complexity 1-15
4.3 Asymptotic Notation1-15

5. Introduction 10 Data STUCIUTE...............eeuueiveecveeieeseeee oo oo oo
5.1 Definition of Data Structure 1-18 52

6. Abstract Data TYPE (ADT)c.ovrrreemreeiaeeieeoeesseese s eoeoeeeoee oo

7. INrOdUCHION 0 AITAYcooiieecieieit e

7.1 Types of Array 1-22
7.2 Use of Array as an Argument to the Function 1-28
7.3 Array — As an Abstract Data Type 1-30
7.4 Applications of Array 1-32
8. Polynomlal
8.1 Polynomial Representation using Array 1-32
8.2 Addition of Polynomials Using Array 1-34
9. SHUCIUNE ...
9.1 Syntax to define Structure 1-35
9.2 Accessing Members of a Structure 1-36
9.3 Structures as Function Arguments 1-36
94 Self-Referential Structures 1-37
2. Searching and Sorting Techniques
INtrOAUCHON...........ooiiie e

Sorting
4.1 Sorting Techniques 2-10
Bubble Sort......
Insertion Sort....
Selection Sort ...
QUICK SO,
Heap Sort..........covveveeeeeeeeeeeer
10, Merge Sort..........ooovceveeoeeerrseeee,
1. Comparison of Sorting Methods
Solved Examples
3. Linked List
1. INErOAUCHON. ...t
2. Concept of Linked Organization
3. Implementation of Linked List
3.1 Static Representation
3.2 Dynamic Representation
- 4, Types of Linked Lists ...

ODRINON HhwWN

5.2 Traversmg a List 3-12

5.3 Inserting an Element in the List 3-13
54 Deleting an element from the list 3-16
5.5 Searching an Element in the List 3-17

5.6 Computation of Length of a Singly Linked List 3-22
\ 6. Doubly Linked List

| Data Structure Using C , oie

7.
S
1.

2.
3
4

©ONS

10.

1.
12.
13.

orwNp=

6. Graphs

PN

tack and Queue

CIrCUIAE LINKEA LISt .. .o iviieeecveeirreseeress s s sb s e b s st e

12110016 13101 1Lc) ¢ PETTUUUOT TR O RSSO PPPS T TITRI TT PR
Definition of a Stack......cc.cooveevvivinennnn

Primitive Operations on Stack
Implementation Of @ StACK.........cu e
4.1 Static Implementation of Stack 4-3
4.2 Declarations and Functions 4-4
4.3 Operations on the Stack 4-5
4.4 Dynamic Implementation of stack 4-9
APPICALIONS OF STACKcv.rreriverei bt
5.1 Recursion 4-12

5.2 Polish and Reverse Polish Notations ~ 4-13

5.3 Interconversion befween Infix, Postfix and Prefix Expressions 4-16
54 Matching Parentheses in an expression 4-20

Operations on a Queue
Implementation Of QUEUBS ...t e
9.1 Static Implementation of Linear Queues 4-23
9.2 Static Implementation of Circular Queue ~ 4-26
9.3 Dynamic Implementation of Circular Queue 4-32
TYPES Of QUBUESvovrrsaasisrieses e bbb
10.1 Linear Queue 4-34 ;
PHOMY QUEUE....vevvirir it st bbbt s
Doubly-Ended Queue (DEQUE)
Applications of Queues.........c.......e.e.
13.1 CPU Scheduling Algorithms

SoIVEd EXAMPIES ...veeeerereiiriiie it TR PPR
Trees '

TS T10010 10151 (o) 1 POTRUUUTRUR PO PP POV PPPPPPPPO e v e caee e
Tree Terminologycoocevviiiernvicinnnncnnn

Binary Treescocvneniie i

Representation of Binary Trees
Operations 0N BINAMY TTEEcovririiuriiiiinnsis s
5.1 Creation of Binary Tree 5-11
5.2 Insertion 5-12)

5.3 Deletion 5-13

Traversing @ BINArY TIBEcooiriiiermiiireies st s s
6.1 Pre Order Traversal 5-18 6.2 in Order Traversal 5-18
6.3 Post Order Traversal 5-19 6.4 Iterative Traversing 5-20
BINAIY SEAICH ...vveueececreaesietseeseset s sns et bh bR
7.1 Binary Trees and Binary Search Trees 5-24
F N £ =YY XU T U OO O P PP PSPPI PP S IR PRSI

GAPNIS. .. cvevevevts e e bbb
1.1 Definitions and Terminology = 6-1

1.2 Representation of Graph 6-6
1.3 Adjacency List Implementation 6-7
Shortest Path Problem
Spanning Tree...............
Traversal Of GraPNSocveerirrci e e b
4.1 Depth-First Search (DFS) 6-16
4.2 Breadth-First Search (BFS) 6-18
APPlICAtIoNS OF GrAPNSvvivireee e

Data Structure Using C oiie

ME

Chiapen [

o
-
@
(1]
O
=
=
1)
1y
l‘,
=
B
=
-

S

iINTRODUCTION TO
DATA STRUCTURE

R R R B A N I B PO ety R e S D e W?&W?M%WMWWQWME%

1. Pointers- An Introduction

Programming can be defined as set of instructions that operates on a data to manipulate its value.
This data can be divided in two types as constants and variables. The basic difference between
variables and constant is their ability to change value at any point in the execution of program.
Constants have fixed values while variables take different values in the execution. This can be done
by providing memory space to variable in which contents can be changed.

Declaration of Variable
All variables must be declared before using them. Syntax to declare normal variable is,
<data type> <variable name>;

where, data type can be one of the basic data types of C i.e. char, int, float etc. and variable name is
any valid C identifier name.

Data Structure Using C

For example: Declaration of normal variable
int x=10;
int y;

Once the variable is declared, it will be provided memory space statically, (atr compile time)
according to its data type, having address of its location and this memory location will be identified
with the name of variable.

Hence, from the programmer’s point of view the data can be manipulated by the name of variable
while it can be manipulated by its address (memory location) in the actual execution of program.

Diagrammatically above code can be shown as
Example 1
int x =10;

X

10 |
65522 65524

In this example, x is the normal variable having address 65522 its address of memory location and
* 10 is the actual value stored at this address.

As shown in the above example x is referred as normal variable as C has provided a very special type
of variable pointer, most powerful as well as useful feature of it, which makes C different than other
programming language.

Consider another example
Example 2

int a=&x;

65522
65518 65520

In this example, a is the variable having address 65518 as its address of memory location and 65522
is the actual value stored at this address.

So, if we relate example 1 and example 2, it can be easily observed that, variable a has stored the
address of x as its value. This simple thing makes variable a to be treated as pointer variable rather
than normal variable.

Hence pointer can be defined as follows:

Pointer is variable that stores memory address of another variable.

 Blatis Goricent and inlraduction

1.1 Usage of Pointer

Syntax to declare pointer variable

<data_type>*<variable name>;

Where data type can be one of the basic data types of C i.e. char, int, float etc. and variable name is
valid C identifier name.

Declaration of pointer variable
int *a;
As defined above, pointer can store the address of another normal variable as its value
Syntax to initialization of pointer variable:
1. Initializing pointer variable with address of normal variable-
Pointer_Variable = &Normal Variable;
Forexample: a = &x;
The unary or monadic operator and gives the ‘address of a variable’.
. Initializing pointer variable with array

Pointer_Variable = Array_ Name; Or
Pointer_Vatiable = &Array Name [0];

For example: int x[10];
a = x; or a = &x[0];
In both cases the starting address of array is assigned to pointer variable.
iii. Initializing pointer variable with character string -

char *Pointer_Variable = <“String Constant”>;
For example: char *p= “Vision”;

As C programmmg has not provided separate data type for string, it can be declared either by using
array or using character pointer as shown in the above example.

The value stored at normal variable now can be retrieved by two methods

1. Using normal variable itself Oct.15,Apr.15 - 2M
. . . What is use of (&
2. Using pointer variable. | address opératgr)and
To retrieve information from pointer variable dereferencing ()
X = *a. operator?

The indirection or dereference operator * gives the “contents of an object pointed to by a pointer”.

Data Structure Using G . - @ ————— . Basic Concept and Introduction ..

/*Program to demonstrate pointer variable */
#include<stdio.h>

#include<conio.h>

void main(void)

{
int x=10; /* normal variable declaration */
int * a; /* pointer variable declaration */
clrscr () ; /* to clear screen */
a=&x; /* to assign address of x to a * /
printf ("\n Address of x=%u",&x); /* address of x */
printf ("\n Address of a=%u",&a); /* address of a */
printf ("\n value at x=%d", x); /* value at x */
printf ("\n value at a=%u\n",a); /* value at a */

printf ("value at x using pointer variable a=%d",*a); /* value at x */
getch () ;
}

Output

Address of x = 65522
Address of a = 65520
Value at x =10
Value at a = 65522

Value at x using pointer variable a = 10

1.2 Advantages of Pointer

i. Pointers can be used to pass arguments with pass by address method.
ii. Similarly pointers can be used to pass array and strfng as an argument to the function.

iii. One of the most important features of pointer is that it can be used in dynamic memory
allocation to allocate and release memory dynamically (at run time).

iv. As pointer holds the address of another variable, data manipulation is done with address to get
execution faster.

V. Pointers are more efficient to handle data structures like Jinked list, trees and graphs.

@ e - B 8181C CONCEPL and Introduction ...

vi. Pointer of void data type can be used to store addresses of variables having different data

types.
For example:

void *ptr;

char ch;

int a;

float b;

ptr=&ch; /* is valid */
ptr=&a; /* is valid */
ptr=&b; /* is valid */

vii. The use of pointer to character string results in saving of data storage space in memory.

viii. A pointer reduces length and complexity of a program.

2. Dynamic Memory Allocation

As stated earlier variables can be declared before using them. This method of declaring variable is
called as static memory allocation. Hence the memory allocated statically (at compile time) must be
used during the execution of program without increasing or decreasing it as per requirement.

Consider the following example,

Suppose you have invited some people on marriage party and you have ordered caterer to prepare
food of 25 people. So food can be consumed when exact 25 people will arrive. But what is the case if
only 20 people have come. The food of 5 people will be just wasted, and what if 30 people come, 5 of
them should find some other resource as there is insufficient food.

Same problem can be considered in case of programming.
As we know, in C programming when we declare array, its size should be mentioned.

For example
int arr [25];

With this array the memory for exact 25 elements will be declared. But, in most of the cases the user
does not know the number of elements to be entered. So, in above example if user entered 20
elements, it will be wastage of memory for 5 elements; generally known as wxderflow. In another
case program will not allow user to enter 26fh element as it will be out of capacity of an array. This
situation is generally known as overflow. Sp as to make user free from both the situations, the
memory should be allocated according to the requirement of user at run time (dynamically), instead

Data Structure Using G

©-

= Basic Conceptand Intoduction

of declaring it at compile time (statically). This technique of Dynamic allocation is a pretty unique
feature to C amongst high level languages. It enables user to create data types and structures of any
size and length by allocating and de-allocating memory whenever required to suit the need of the

program.

Allocating memory space at run time is called as Dynamic Memory Allocation.

2.1 Dynamic Nemory Allocation Functions

Apr.15 Oct.14—4M \

Explain different types of
dynamic memory
allocation functions.
Oct.2012 - M

Explain dynamic memory
allocation functions with |
their syntax.
Apr.10, Oct.10 - 2M

Explain in brief the
functions of dynamic

Qemory allocation. /

The C programming language has provided some built-in functions
for the dynamic memory allocation. These functions are grouped in
a header file alloc.h, and those are as follows:

i. sizeof(): sizeof is a unary operator, which gives size of its
argument in terms of bytes. Any data type (int, float, char),
variables, array or even structures can be sent as an argument
to this.

For example: sizeof (float) ;
This gives the bytes occupied by the ﬂoat data type that is 4.
/* Program to understand the sizeof operator */

#include<stdio.h>

main()
{

struct

{

char Name [10] ;

int RollNo;

}S;
int No[10];
printf (" size of structure = %d",sizeof(S)}};
printf("\n size of float = %d",sizeof (float));
printf("\n size of array = %d",sizeof (No));
}

Output

size of structure = 12
size of float =4
size of array = 2(i

Data Structure Using G+ @ —— Besic Conceptand Introduction’

ii. malloc(): This function is used-to allocate a memory for required number of bytes. The
memory created by malloc at run-time should be assigned to the pointer to get starting address

of it.
The prototype of the malloc function is as follows: 1
void * ptr = malloc(size); :

. . Oct.2011 - 2M ,
Where size tells the specified number of bytes of memory that What is the difference
should be allocated and ptr is pointer, which points to the between Malloc and
starting memory address that has been allocated. Calloc?
For example '
int *ptr;
ptr = (int *)malloc (20);
This allocates 20 bytes of memory space and its starting address will be assigned to the integer
pointer ptr.

Program to demonstrate malloc function
/* Program to accept n number and display those numbers in reverse order */
ffinclude<stdio.h>
#include<conio.h>
#include<alloc.h>
void main(void)
{
int *num;
int n,i;
clrscr () ;
printf ("\n Enter how many numbers you want to enter :");
scanf ("sd", &n) ;
/* dynamic memory allocation function */

num =(int *) malloc(n % sizeof(int)):;
for(i=0; i<n; i++)
{
printf ("Enter Number:");
scanf ("%d", num) ;
num++; /* to move pointer to next location */
1
printf ("You have accepted following number in reverse order:");
for (i=0; i<n; i++)
{ num - -; /* to move pointer to previous location */

’

printf ("\n %d", *num) :

¥
getch{() ;
}

iii.

Output

Enter how many number you want to enter: 5
Enter Number: 10
Enter Number: 20
Enter Number: 30
Enter Number: 40
Enter Number: 50
You have accepted following number in reverse order:
50
40
30
20
10

calloc(): This function is used to allocate a memory in multiple blocks for required number of
bytes to same type of object. The memory created by calloc at run-time should be assigned to
the pointer to get starting address of it.

The prototype of the calloc function is as follows:

void * ptr = calloc(rec, size);

Where rec tells total number of blocks where each block is having memory specified by size
and ptr is pointer which points to the memory that has been allocated.

Generally calloc() function is used to allocate memory for array and structure.

For example
struct stud
{
int roll_no;
char name[20];
float percent;
b
struct stud *ptr;
ptr = (struct stud*)calloc(20,sizeof (struct stud)) ;

This allocates 20 blocks for structure student and each block will be having memory space
required by the object of structure i.e. 26 bytes. Program to demonstrate calloc function.

Data Structure UsingC -,

/* Program to accept n numbers and display addition of numbers */

#include<stdio.h>

#include<conio.h>
#include<alloc.h>

void main ()

{

int *num;
int n,1i,s=0;
clrscr () ;
printf ("\n Enter how many numbers you want to enter
scanf ("&d", &n) ;
/* dynamic memory allocation function */
num=(int *) calloc(n, sizeof (int));
for (i=0; i<n; i++)
: v
printf ("Enter Number:");
scanf ("&d", num) ;

S=S+*num;

num++; /* to move pointer to next location */
}
printf("\n Sum of given number = %d ", s);
getch () ;
}
Output

Enter how many numbers you want to enter: 5
Enter Number: 10
Enter Number: 20
Enter Number: 30
Enter Number: 40
Enter Number: 50

Sum of given number = 150

———— Basic Conceptand Intioda

HUS I

iv.

realloc(): In dynamic memory allocation, sometimes such situations can arise where either
we want to increase or decrease the memory space, allocated using malloc() or calloc()
function. So in such situations, previous allocation should be changed and memory should be
reallocated to fulfill the current need of user. The memory can be reallocated using realloc()
function.

The prototype of the function is as follows:

void *ptr = realloc(ptr, new_rec_size);

Where new rec_size tells the new required size of memory in terms of bytes and ptr is
pointer which points to the memory that has been previously allocated.

In realloc() function, the main point to be noted is that, previous starting address of pointer
can be replaced with the new address provided by the function as per availability. In other
words the old memory block (allocated by malloc() or calloc() will be replaced with new
memory block (allocated by realloc()

But what about data that is stored at the old memory blocks? Interestingly, the contents of old
memory block will not be lost rather contents of old memory block will be preserved by
copying them into new memory block.

Consider the following example
ptr = malloc(10);

The pointer ptr will be allocated with the starting address of allocated memory block of 10
bytes.

ptr = realloc(ptr,20);

The pointer ptr can be allocated with new starting address of new memory block of 20 bytes
other than previous address but at the same time contents of previous block will be kept as it is
after copying them into new block.

Program to demonstrate realloc function.

/* Program to accept n numbers and display them in reverse order */
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
void main (void)
{
int * num;
int nil,n2,1i;
clrscr () ;
printf ("\n Enter how many numbers you want to enter :");
scanf ("%d", &nl) ;
/* dynamic memory allocation using calloc function */
num= (int *) calloc(nl,sizeof (int));
for (i=0; i<nl; i++)

printf (" Enter Number:");
scanf ("%d", num) ; .
num++; /* to move pointer to next location */
}
printf ("How many extra number you want to enter:");
scanf ("%d", &n2) ;
num= (int *) realloc (num, (nl1+n2) *sizeof (int)) ;
for(i=nl;i<nl+n2;i++)
{
printf (" Enter Number:");
scanf ("%d", num) ;
num++; /* to move pointer to next location */
printf ("You have accepted following number in reverse
order :");
for (i=0;i<nl+n2;i++)
{
num--; /* to move pointer to previous ‘location */
printf ("\n %d4", *num) ;
}
getch() ;
}

Output
Enter how many numbers you want to enter: 3
Enter Number: 10

Enter Number: 20
Enter Number: 30

How many' extra numbers you want to enter: 2

Enter Number: 40
Enter Number: 50
" You have accepted following number in reverse order:

50
40
30
20
10

free(): To use memory very efficiently, it should be released, if not required. The free()
function should be used to release the memory space allocated to pointer variable. The free()
function normally releases the memory space created using malloc() and calloc() function.

For example: free(ptr)

Pata Stygus Using C

— Basic Concept and Introduction ...

Where ptr is the pointer of which memory has to be released, that” was allocated using
malloc() or calloc() function.

Program to demonstrate free function

/*Program to accept n numbers and display addition of number*/

#include<stdio.h>
#include<conio.h>
#include<alloc.h>
void main(void)
{
int * num;
int n, i, s=0;
clrscr () ;
printf ("\n Enter how many numbers you want to enter ")
scanf ("%d", &n);
/* dynamic memory allocation function */
num= (int *) calloc(n, sizeof (int));
for (1=0; i<n; i++)
{
printf (" Enter Number:"};
scanf ("%d", num) ;
s=s + *num;

num++; /* to move pointer to next location */
} .
printf ("\n Sum of given number = %d ", s8);
free (num) ;
/% free the memory of variable num allocated by calloc
function */
getch();
}
Output

Enter how many numbers you want to enter: 5
Enter Number: 10

Enter Number: 20

Enter Number: 30

Enter Number: 40

Enter Number: 50

Sum of given number = 150

Note: The memory of 10 byte size allocated to pointer num will be released after the execution of
free function.

3. Algorithm Definition and Characteristics

Algorithm: It is a method of solving a problem. It is a sequence of instructions that acts on some
input data to produce some output in a finite number of steps.

An algorithm can be specified in many ways. For example, it can be
written down in English or any other natural language. However,
algorithms can be precisely specified using an appropriate
mathematical format like a programming language. Obviously the
behavior of an algorithm can be observed with the help of program
which can be defined as an implementation of an algorithm.

Apr 2011 2M
' 'Deﬁne Mgnnthm

If we run a program, implementing an algorithm, on a particular 0ct.2012 ZM "
computer with a particular set of inputs, then behavior of the ‘What is Algorithm? State
program is according to the single instance related with set of inputs its propeme& .
and computer used.

Definitions
i Algorithm is a set of rules or instructions that specify how to solve a particular problem or
task.

ii. Algorithm is a step-by-step procedure for accomplishing a task.

iii. = Algorithm is a list of instructions to solve a particular problem. 1
Oct.2015 - 4M

What is algorithm?
Explain its characteristics

An algorithm must have following properties: in detail.

Properties

i Input: Algorithm must receive some input data.
ii. Output: Algorithm must produce at least one output as the result.

Finiteness: No matter what is the input, the algorithm must terminate after a finite no. of
steps.

iv. Definiteness: The steps to be performed in the algorithm must be clear and unambiguous.

v. Effectiveness: One must be able to perform the steps in the algorithm without applying any
intelligence.

Data Stucture UsingC .~ S Basic Concept and Introduction 7

4. Algorithm Analysis

In order to learn about the behavior of an algorithm, we can ‘analyze’ it by studying the specification
of the algorithm and drawing conclusions about how the implementation of that algorithm can be
made general for any computer for any set of input.

The analysis of algorithms is the determination of the amount of resources (such as time and storage)
necessary to execute them.

Most algorithms are designed to work with inputs of arbitrary
length. Usually, the efficiency or running time of an algorithm is
Apr2015 - aM stated as a function relating the input length to the number of steps

' ithm? : . . .
&V:\‘?tt:f:lg:s'g?g ti?sm. (time complexity) or storage locations (space complexity).

performance? L In theoretical analysis of algorithms it is common to estimate their
complexity in the asymptotic sense i.e. to estimate the complexity
function for arbitrarily large input.

1

An algorithm can be analyzed by determining

i. The running time of a program as a function of its inputs;

ii. The total or maximum memory space needed for program data;

iii. The total size of the program code;

iv. Whether the program correctly computes the desired result;

. The complexity of the program--example, how easy is it to read, understand, modify;
vi. The robustness of the program--example, how well does it deal with unexpected inputs?

But, primarily the analysis of algorithm is concerned with the running time and the memory space
needed to execute the program. The time and space requirements, referred as time and space
complexity of an algorithm, enable us to measure how efficient it is.

0ct.2014 - 2M

What is time complexity?
How it is calculated?

Oct2011-2M
Define time Complexity?

4.1 Time Complexity

Time complexity can be defined as running time of the program.
There are many factors that affect the running time of a program
which can be - the algorithm itself, the input data, and the computer
system used to run the program.

The time complexity cannot be measured by calculating the time
using the computer clock, because:

Data Structure Using © e ﬁ@ — Basic Concept and Infroduction

Program may also wait for I/O or other resources.
3

While running a program, a computer performs many other
computations, Apr.12, 10, Oct.10 - 2M

. ; . How to.measure
So, we must use some abstract notation to calculate time complexity. poHommanice of an

Generally the running time of an algorithm is proportional to the Algorithm?
number of steps it takes to execute the algorithm.

In such theoretical analysis of algorithms it is common to estimate their complexity in asymptotic
 sense, 1.e., running time can be defined as a function of the size of the input data which is noted as
‘Big-O Notation’.

QOct.2015 - 2M
What'is space

4.2 Space Complexity ggggll:ggy; How is it

Space complexity can be defined as amount of computer memory required during the program -
execution. The space complexity also cannot be exactly measured, but can be calculated by
considering data and its size.

So, space complexity can also be calculated exactly like time complexity i.e. using ‘Big-O Notation’
of the size of the items which require maximum storage in given data.

Oct.15,Apr.15 - 5M
Explain different types of

4.3 Asymptotic Notation stn;ptotic notations in
etail. :

To choose the best algorithm we need to check efficiency of each algorithm. The efficiency can be
measured by computing time complexity of each algorithm.

Asymptotic notation is a shorthand way to represent the time complexity.

Using asymptotic rotations we can give time complexity as ‘fastest possible” ‘shortest possible’ or
‘average time’ various notations such as Q, 6 and O used are called asymptotic notations.

i Big-O Notation: Big-O notation is considered as a property of the algorithm. Big-O notation
is used as functions, which specify the amount of resources consumed by an algorithm, when
the input to the algorithm is of size N. This function is usually denoted by O(N) where O(¥) is
the amount of the resource, usually time or space of some specific operation consumed.
Generally, the time required by an algorithm can be calculated as time required per basic step.

For conditional, we count number of basic steps on the branch that is executed i.e. number of
statements either in if block or else block.

Data Srcfure Using G @~ - Basic Concept and Introduction. .
For a loop, we count number of basic steps in loop body i.e. number statements in looping
statement block, times the number of iterations.

For a method, we count number of basic steps in method body.

Hence, efficiency of particular algorithm can be measured for a particular size of input (N),
but when N increases and it becomes larger, then same algorithm behaves differently. So Big-
O Notation defines order for growth.

While calculating the Complexity with the Big-O Notation
1. Simplify the basic steps and
2. Choose the highest term.

For example, consider the job offers from two companies. The first company offers a contract
that will double the salary every year. The second company offers you a contract that gives a
raise of Rs.1000/- per year.

Hence salary at the first company increases at the rate of 2n
New salary = Salary x 2" (where n is total service years)

The highest term in this equation is 2" which can be denoted as O(2n) in Big-O notation.

While salary at the second company increases at a rate of 1000n.

New salary = Salary + 1000n (where n is total service years)

The highest term in this equation is 1000n which can be denoted as O(n) in Big-O notation.
Hence from above example we can denote ‘Big-O Notation’ as a function of the size of the
input data as follows.

f(n) = O(g(n))

Where f(n) represents the computing time of some algorithm O(g(n)) which takes time not
more than constant g(n).

| / Seen Time Bounds
o) Constant Excellent Letf(n)=3n’+6n—7
O (log n) Logarithmic Excellent Claim f(n) = o(n?)
O (n) Linear Good Let f(n) = 4n log n+ 34n —- 89
O(nlogn) Good Claim f(n) = O(n log n)
0 (n?) Quadratic OK Let f(n) =20 * 2"+ 40
0 (2" Exponential Too slow Claim f(n) = O(2")
Letf(n) =34
Claim f(n) = O(1)

Data Structure UsingC. -~~~ » ——————— Basic Concept and Introduction ...

ii. ~ Omega Notation (Q): f(n) = Q(g(n)) iff there exists a positive integer ny and a positive
number M such that | f(n) | >M | g(n) |, for all n > n,. v

Example:
a. 1.3n+2=Q(n)as3n+2>4nforalln>1.

iii. Theta Notation (0): f(n) = 6(g(n)) iff there exist two positive constants ¢; and ¢, and a
positive integer ng such that,

¢y | gn)| < f(n) <c, | g(n)| for all n >n0.
for all values of n,n > no. In other words, f(n) = O(g(n)) and f(n) = Q(g(n)).
Example:
a. 3n+2 =6(n)as3n+2>3nforalln>2. and
3n+2<4nforalln>2.
Soci=3,¢c,=4 and n0 = 2.
iv. Little Oh Notation(o): Definition: f(n) = o(g(n)) (f of n is little oh of g of n) iff f{n)=0(g(n))

and f(n) # Q(g(n)).

0< lim {0_,
n—« g(n)

Example:

For f(n)=18n+9, we have f(n) = O(n’) but f(n) = Q(g(n)). Hence f(n)‘= o(n).

5. introduction to Data Structure

Computer science can be defined as the study of data, its representation and transformation. Once
data is stored in the form of bits, it has to be accessed and manipulated many times. To do so, there
must be inbuilt mechanisms to access and store data.

Each programming language provides a set of built in data types, which allows data to be stored in a
meaningful format. The language also provides a set of operations to manipulate this data.

However, these data types are not enough, since present day programming problems are complex
and large. Thus, there is a need for a structured data type, which may be a combination or collection
of basic data types with a set of properties and legal operations that may be performed on it. This is
called the conceptual definition of the data type or the Abstract Data Type (ADT).

Data Structure Using©: =

The next stage is the Implementation stage where the ADT is implemented by hardware or software
methods.

Depending upon the application, the data type has to be chosen and carefiil thought has to be given
to how the data is to be stored so that there is efficient storage, convenient and faster retrieval and
manipulation. This is called time and space consideration.

51 Definition of Data Structure

Before we proceed, there are several terms that we need to define. There is no standard definition
for these terms and they are often used interchangeably.

Data Object
Data object refers to a set of elements (D) which may be finite or infinite.

If the set is infinite, we have to devise some mechanisms to represent that set in memory since
available memory is limited.
Example:
A set of integer numbers is infinite
D={0,+1,+2... }
A set of alphabets is finite,
D= {A’,‘B’,...,'Z°}

Data Types

Data-type is a term used to describe the information type that can be processed by the computer and
which is supported by the programming language.

It is also defined as a term which refers to the kinds of data that variables may ‘hold’ in a
programming language.

Example

int, char, float, etc.

Some languages also allow users to combine built-in data types.

Example

record in Pascal, structures and unions in C.

Data Structure

A data structure consists of data objects, their properties and the set of legal operations, which may
be applied to the elements of the data object.

Definition

A data structure is a set of domains D, a designated domain deD, a set of functions
F and a set of axioms A. The triple (D, F, A) denotes the data structure.

This definition is also called the Abstract Data Type.

D - Denotes the data objects

F - Denotes the set of operations that can be carried out on the data objects.

A - Describes the properties and rules of the operations.

Apr.15,0ct.14 - 2M

What are the different

5.2 Types of Data Structures types of data structures?

The data structure can be divided into two basic types: Preliminary data structure and secondary data
structures.

Data structure

Primitive Data structures
Example: int, chart, float

Non primitive data structures

v ¥
Linear data structures Non linear data structures
Example: lists,stack,queues Example: trees,graphs

A set of primitive elements which do not involve any other elements
as its subparts, is called as ‘Primitive Data Structure’.

For example, ‘int, char, float, double.
Apr.2011 ~ 2M

The non primitive data structures are the data structure which are What is primitive data

basically derived from primitive data structures. They can be further structure?
categorized into linear data structure and non linear data structures.

Data Structure UsingG =~~~ ~ Basic Concept and Introduction ...

Linear data structures are the data structures in which data is arranged in a list or in a straight
sequence.
For example: arrays, lists

Non linear data structures are the data structures in which data may be arranged in a hierarchical
manner.

6. Abstract Data Type (ADT)

In computer science, programming basically depends upon the data,

. its representation and manipulation i.e. the method by which the bits
Oct.2009 - 2M of data are accessed. Each programming language provides inbuilt
Define ADT (Abstract mechanism to store data. The data can be distinguished in different
Data Type). data types like integer, floating or character type. Hence

programming provides meaningful format for data and also set of
operations to manipulate this data.

For example, when we declare a variable, say x, of type int, we know that x can represent an integer
in the range of 16-bits and we can perform operations on x such as addition, subtraction,
multiplication, and division. In case of data type int we don't need to know how integers are
. represented nor how the operations are implemented to be able to use them.

But, these basic data types are not useful in case of very large and complex programs, where we need
combination of basic data types having set of properties and operations that can be performed on it,
which can be called as data structure or abstract data type.

In general terms, an abstract data type can be considered as set of values and the operations
performed on it with some rules or properties on the data.

When we use abstract data type, our programs are divided into:

The Application
The part that uses the abstract datatype.

The Implementation

The part that implements the abstract datatype.

Basic Concept and Introduction . .

Data Structurs Using G

Application €& uses the ADT

@@A defines the ADT

implementation &———— implements the ADT

The Abstract Data Type is a type of a variable which specifies three sets:

1. A set of values
2. A set of properties; and,

3. A set of operations.

By organizing our program this way i.e. by using abstract data types (its values and operations)
without referring as to how it will be implemented. Programs that use such data type only know the
implementation of the set of values but make use of the operations defined abstractly without

knowing their implementation.

7. Introduction to Array

Any programming language provides different terms to develop a program like identifiers,
keywords, constants and data types. Similarly, C programming language has come up with some of
its unique terms to facilitate programmers, for example C programming language has provided two
categories of data types as primary data type and secondary data type where data type is referred to
as a type of data that can be held by variable or constant.

As most of the programming language has provided primary data types, C programming language
has provided following secondary data types.

T T

Data Structure UsingC =, @ Basic Concept and Introduction | ..

Secondary Constants / Data Type

i. Array constant: Used to store same type of data in continuous memory location under unique
name.

ii. Pointers: Pointer is a variable, which holds memory address of another variable.

iii. Structure: Used to store/hold different types of data and allocates memory of all variables
declared as structure data type.

iv. Union: Used to store/hold different type of data and allocates memory of maximum size
variable.

7.1 Types of Array

One-Dimensional Array

A one-dimensional array is used when it is necessary to keep a large number of items in memory and
reference all the items in a uniform manner. A list of items having one variable name, one subscript
is known as an One-dimensional array. In C single subscripted variable x; can be expressed as
x[0], x[1], x[2]....... x[n] e.g., to represent a set of five numbers 11, 22, 33, 44, 55 by an array
variable number, declare the variable number as follows:

int number([5]; and computer reserves five storage locations as shown below:

number[0] The val_ues to the array elements can
be assigned as follows :

number(1] number(0}=11

number{2] number|[1]=22

number[3] number[2)=33

number{4] number|[3]=44

number[4]=55

Thus array number stores the values as shown below:

11 number [0]
22 number{1]
33 Number[2]
44 number[3]
55 number[4]

Storage Representation of One Dimensional Array

@ “Basic Concspt and ntrodicion’..

0 declare an array in C++, the programmer specifies the type of the elements and the number of
lements required by an array as follows:

eclaration of array

YRtax: type array—name[array_size];

ere type specifies the type of element that will be contained in the array such as int, float or char
nd array-size specifies the maximum number of elements that can be stored inside the array.
xample,

loat height[50] ;

eclares height to be an array which contain a maximum of 50 real numbers.
int group[10] ;

; declares name as a character array (string) variable that can hold a maximum of 10
haracters. Suppose we read a string “WELL DONE” into an array name.

hen each character of the string in an array name is stored in memory as follows.
lw e [v v Do N E o |
al0] a1l { af2] | a[3] | a[4] | a[5] | al6] | al7] | a[8] | a[9]

hen the compiler sees a character string, it terminates it with an additional null character. Thus

lement[9] holds the null character \0’ at the end. So when declaring character array, we must
Iways allow an extra element space for the null terminator.

itialization of Array

ou can initialize C++ array elements either one by one or using a single statement as follows

niax: type array-name f[array sizel={list of Values};

alues in the list are separated by commas. The number of values between braces { } cannot be

ween square brackets []. If you
it the size of the array, an array just big enough to hold the initialization is created.

ample,
t number [3]1={0,0,0};

uble balance]]={50.45,65.85,70.42,45.60};
ar name([]={'d", '¢°,
imilar manner.

//The size can be omitted.
'm*}; //Character array can be initialized in the

u can assign the individual values in an array.
r example, number [3] =80 ;

()

After initializing an array, its elements are counted from left to right. Each element of the array, alst
called a member of the array, has a specific and constant position. The position of an item is als
called its index. The first member of the array, the most left, has an index of 0. The second membe
of the array has an index of 1. Since each array has a number of items which can be specified as 1
the last member of the array has an index of n-1. Based on this system of indexing, to locate

member of an array, use its index in the group. An element is accessed by indexing the array name
This is done by placing the index of the element within square brackets after the name of the array.

Accessing Array Elements

For example,

int rollno=number [3];

The above statement will take 3% element from the array and assign the value to rollno variable.
Once you can locate a member of the array, you can display its value using cout.

Here is an example program:

Create one dimensional array and accesse each element of array separately.

#include<iostream.h>
int main()

{
double Iollid[]={11.22,22.33,33.44,44.55,55.66};
cout<<"Rollid 1:"<<rollid[0] <<endl;
cout<<"Rollid 2:"<< rollid[1<<endl;
cout<<"Rollid 3:"<X rollid[2] <<endl;
cout<<"Rollid 4:"<<rollid[3]<<endl;
cout<<"Rollid 5:m<<rollid (4] <<endl;
return O;

}

Create one dimensional array and accesse each element of array by applying for loop.

#include<iostream.h>
int main{()
{
double rollidil = {11.22, 22.33, 33.44,44.55,55.661};
for {int i=0;i<=4;i++)
{
Cout<<"RoIlid["<<i<<"]="<<Iollid[i]<<endl;
i
return 05

}

Two-Dimensional Array

An array having two dimensions (sizes) is known as a Two-dimensional array. It is a collection
data elements of same data type arranged in rows and columns (that is, in two dimensions).

Data structura Using G oo - Basic Concept and Introduction ...

Declaration of Two dimensional arrays

A two dimensional array can be thought as a table which will have x number of rows and y number
of columns.

Syntax: type array name[row-size] [column_sizel; ‘Oct.2014 - 2M

Here type specifies the type of element that will be contained in the Sé‘é?;g: ég;g::i'é?&f‘% .
array such as int, float or char and row-size specifies the number of row and column majdr o
rows and column-size specifies the number of columns, array-name representation? :

_ is the name of table or, matrix.
A 2-dimensional array ‘a’ which contains three rows and four columns can be shown as below:

Column0 Column1 Column2 Column3
Row 0 | a[0][0] a[o][1] a[0][2] a[o][3]
Row 1 | a[1]{0] a1l a[]i2] a[1](3]
Row 2 | a[2][0] a[2][1] al2][2] al2][3]
Storage representation of two dimensional array

Thus, every element in array ‘a’ is identified by an element name of the form a| i || j], where ‘a’ is
the name of the arrdy, and i and j are the subscripts that uniquely identify each element in ‘a’.

Example: int a(3]11[3]; //A matrix of 3-rows and 3-columns

Initialization of Two-dimensional arrays

A two-dimensional array can be initialized along with declaration. For two-dimensional array
initialization, elements of each row are enclosed within curly braces and separated
by commas. All rows are enclosed within curly braces. ‘
Syntax: int al2] [3]1={0,0,0,1,1,1};

It initializes the elements of the first row to zero and second row to one.

int af2](31={{0,0,0},{1,1,1}};"

Example: A matrix of 3x3 is initialize by
int al31(3]={11,22,33,44,55,66,77,88,99};
Col-0 Col-1 Col-2

{ { 1
A[OJ[0] A[O[1] A[0]2] «— Row-0
| 11 [22] 33 |

A0l A1l AMI2] «— Row-1
44 [55 | 66 |

A2IIO) AlRJ[1] A2]2] «— Row-2
77 | 88 [99 |

Two-dimensional array are stored in memory

Accessing two-dimensional array element

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and column
index of the array.

For example,

int val=al[1] [2]; //Statement will take 3rd element from the 15 row
of the array.

Muitidimensional Arrays

As discussed in Single dimensional array, the pair of [] used to mention size of array, is considered
as dimension of it. As such array is using only single pair of square braces it is called as single
dimensional array. So, array having multiple pairs of square brackets are termed as Multidimensional
array, or Multidimensional arrays can be described as “arrays of arrays’.

For example, a two-dimensional array can be declared as-

int Mat[3] [5];

This can be represented as a two-dimensional table as follows

0 1 2 3 4

-

Mat

Mat represents a two-dimensional array of 15 elements of type int, arranged in 3 rows and 5 columns
as shown in above. Hence declaration syntax of two dimentional array is -

Data type Array name[Row] [Col];

Where, Data_type represent type of data that can be stored in array named ‘Array_name’, which is
any valid identifier name and Row and Col are the integer values, which represents total number of
rows and columns into which the elements can be arranged logically.

/* Program to explain Matrix Multiplication using two dimensional array */

#include<stdio.h>
#include<conio.h>
void main ()
{
int i, j, matal3]{3],matb[3] [3];
void matmul (int mata[3] [3]}, int matb([3] [3]);
printf (“Enter elements of first 3 X 3 matrix \n”) ;
for (1i=0; 1i<3;i++)

{
for (3=0;3<3;j++)
{

scanf (“%d"”, smatalil [j]);
}
}
printf (“Enter elements of second 3 X 3 matrix \n”);
for (i=0; i<3;i++)
{
for(j=0;3<3;j++)
{
scanf (“%d”, &matbl[i] [j]);
}
}
matmul (mata,matb) ; /* array as an argument */
getch() ;
}
void matmul (int first[][], int second[] (1)
{
int matmul (3] [3],1i,7,k;
for (i=0; i<3;i++)
{
for (j=0;3<3;j++)
{
matmul [1] [j]=0;
for (k=0;k<3;k++)
{
matmul [i] [j] = matmul[i][j]+first[i][k]*second[k][j];
}

}
}
printf (“Multiplication of entered 3 X 3 matrix \n”) ;
for (i=0; 1i<3;i++)
{
for (j=0;3<3;j++)
{
printf (“8d\t”matmul (i] [§]) ;
}
}
printf (“\n”) ;
}

Output

Enter elements of first 3 x 3 matrix
3 4
2 1
3 2

Data Stucture UsingC = = @ —e Basic Conceptand Introduction .

Enter elements of second 3 x 3 matrix

3 2 5

6 2 1

6 3 5

Multiplication of entered 3 x 3 matrix
48 22 33

30 15 27

45 22 38

7.2 Use of Array as an Argument to the Function

In some cases we may need to pass an array to a function as an argument. In C programming it is not
possible to pass a complete block of memory of an array, as a parameter to a function, with pass by
value, but we can pass its address.

In order to pass array as a parameter, we have to declare the function by specifying the element type
of the array, name of array and a pair of empty brackets [] in its parameters. For example, the
following function:

void sum(int arr{])

Where, sum is a function name of void data type, which accepts array as a parameter of type
int having name array name arr.

The syntax can be as follows:
return type function name (data_type name[])

Where, return_type is a valid type (like int, float...), function_name is a valid identifier and
data_type is also a valid data type of array (like int, float...), name is any array name i.e. any valid
identifier, square brackets[]; specifies the array as a parameter.

/* Program to accept 5 numbers using array and display it along with its sum.*/

#include<stdio.h>
int sum(int arr[})

{

int I, s=0;
for (I=0;I<5;I++)
{

gs+=arr[I];

}

return s;
}
void main()
{
int I, m, No[5];
printf (“Enter 5 Numbers \n”);
for(I=0;I<5;I++)
{
scanf (“%d”, &No[I});
}
printf("Entered Numbers are \n”);
for (I=0;I<K5;I++)
{
printf (#%d\n”, Nol[I]);
}

Sum of entered numbers are 23

elements of an array can be accessed according to index using the for loop.

m=sum(No); /* also we can pass array as m=sum(&No[0]); */
printf (*Sum of entered numbers are “);
printf (“%d”, m);
getch () ;
No[0] No[1] No[2] Nol[3] Noj4]
2 5 6 7 3
' 100 102 104 106 108 110

The parameter (int arr[]) accepts an array of any length and whose elements are of type int. The

PDeasmdueosmge o @ ——————————— Basic Concept and Introduction ...

_4
7.3 Array - As an Abstract Data Type

The Abstract Data Type is a type of a variable which specifies three sets:

i. A set of values

ii. A set of properties; and,

iit. A set of operations.

Generally, abstract data type is a collection of elements having some properties on it, and operations
to manipulate the data according to those properties.

The properties are related with the storage and retrieval of elements from the collection at specific

position. Hence, as array being a collection of elements of same data type, it can also be considered
as Abstract Data Type.

Whenever collection of elements is considered, the operations are related with storing and retrieving
the elements into it and properties are related with the rule for the position at which either we can
store the element or retrieve the element. Hence array, collection of elements having store and
retrieval as its operations, is a strong competitor for being an Abstract Data Type. We can retrieve or
store element at any position in an array without any specific rule, it is not having any set of
properties to follow.

Hence, array as an Abstract Data Type (ADT) can be defined as

‘ follows:
Oet.2012 - 2M
m:};s kil Set of Values for Array
Apr2011 -~ 2M S A set of values for array are array index and value at specified index.
ng_':_ne Army, Give s ie. (index, value), where for each value of an array has its own
' index.

Set of Operations/ Functions for Array

i Item Retrieve (Arr, i): Where, Retrieve is a function name having return type item i.e. data
type of array. if ‘i’ is the valid index of an element in an array ‘Arr’, which should be in the
range from 0 to Array_size -1, then this function returns the value of element associated with
index ‘i’ in array ‘Arr’ else returns error as invalid index.

ii. Store (Arr, i, x): Where, Store is a function name. if ‘i’ is the valid index of an element in an
array ‘Arr’, which should be in the range from 0 to Array_size -1, at which the value ‘x’ has to
be store else returns error as invalid index.

/* Program to accept 10 numbers from user and sort them using Pointer */
#include<stdio.h>

#include<conio.h>

void main ()

{

Data Structire Using : @
N4

int i,3;

int nol10];

int *a;

for (i=0;1<10;i++)

{

printf ("Enter Value of no[%d]\t",1i);
scanf ("%d", &no[i]) ;

}

printf ("values Before Sortintg \n");

for (i=0;1<10;i++)

{ .

printf("%d---",nofil);

}
a=no;
for(i=0;i<10;i++)
{
for (3=1;3<10;Jj++)
1
if (* (no+i) >* (no+j))
{
swap (no+i,no+j) ;
1
}
}

printf ("\n After Sorting \n");
for (i=0;1<10;1i++)

{

}

getch () ;

}

swap (int *b, int *c)

{

printf("%d---",noli]);

int temp;

temp=*b;

*b: * (ol

*c=temp;
}
}
Output
Enter Value of no[0] 5
Enter Value of no[1] 3
Enter Value of no[2] 12
Enter Value of no[3] 33
Enter Value of no[4] 1
Enter Value of no[5] 13
Enter Value of no[6] 45
Enter Value of no[7] 36

- Basic Concept and Introdiiction -

Basic Concept and Introduction’..

Pata Structure Using G

Enter Value of no[8] 68
Enter Value of no[9] 34

Values Before Sorting
5---3---12---33---1---13---45---36---68---34---
After Sorting

1o--3m-5e--12-13---33---34---36---45---68--

7.4 Applications of Array

Array can be used in numerous applications like

i. Storing numeric data lists

ii. Storing character strings

iii. Manipulating matrix using two-dimensional type.

iv. Implementing different data structures like stack, queue etc.

v. Representing lists like polynomials.

8. Polynomial

A polynomial can be represented in an array or in a linked list by simply storing the coefficient and
exponent of each term. However, for any polynomial operation, such as addition or multiplication of
polynomials is easier to deal.

8.1 Polynomial Representation using Array

A polynomial is a expression, derived in terms of sum of elements
which can be represented as CX°, where C is a coefficient, X is a
variable and e is a exponent.

For example: X*+10X>+3X°+7X + 1

Data Structure Using © Basie Concept and Introduction ..

In above example the polynomial is represented as a sum of 5
elements where

1
1% element: X* having coefficient 1 and exponent 4 for variable X Oct2011-2M
2" element: 10X° having coefficient 10 and exponent 3 for variable X What are the different
ways to represent
3™ element: 3X* having coefficient 3 and exponent 2 for variable X polynomial?

4™ element: 7X having coefficient 7 and exponent 1 for variable X
5™ element: 1 having coefficient 1 and exponent 0 for variable X

From programming point of view, representation of polynomial is important in case of carrying
different operations on it like:

i. Addition

ii. Subtraction

iii. Multiplication

iv. Division

The polynomial can be stored and represented using array.

The array can have the size depending upon highest degree/exponent of polynomial. So to represent
polynomial in above example, the array can be declared with size 5 i.e. highest exponent + 1.

Hence array can be declared as
int poly[5];

Hence, elements in an array will be having indices 0 to 4 which can be used to represent exponents
of polynomial and value stored at these indices will represent the coefficients of respective term
having exponent equal to the index.

For example: X*+10X>+3X*+7X + 1
It can be represented in an array

int poly={1,7,3,10,1}
Diagrammatically it is shown as below

0 1 2 3 4
Poly |1 |7 |3 [10 [1 |
1 X° 7* X' 3* X2 10* x° 1*x*

Hence, each index stores coefficient of term having exponent exactly equal to an index i.e.
polynomial can be stored in reverse order according to their exponents in to an array.

8.2 Addition of Polynomials Using Array

When two polynomials are to be added, the resultant polynomial can be generated by adding the
coefficients from both polynomials having same exponent.

For example
A=5X’+3X>+2X + 1
B=4X>+X+9
Hence C= 5X°+7X*+3X + 10
To add two polynomials using array, the following steps can be followed.
I. Store both given polynomials into an array in reverse order of their exponents.
ii. Declare array for resultant polynomial.
iti. - Consider the values at each and every index from both arrays

iv. Add those values and store the result at corresponding index, at which the values are
considered, in resultant array.

v. Repeat above Step for all the indices.
vi. Display resultant array.

For example

A=5X3+3X2+2X +1

0 1 2 3
Al1 [2 3 |5
1* X° 2x X' 3* X2 5* X3
B =4X*+X+9
0 1 2 3
B|9 [1 4 [0 |

1* x° 1* X’ 4* X2 o* x®
C=A+B=5X+7X*+3X+10

0 1 2 3
C | 1+9=10 [2+1=3 4+3=7 5+0=5

10* X° 3* X' 7* X2 5+ x3

Pamsicstenge - @ — Basic Concept and Introduction ...

9. Structure

Structure is another secondary data type. Structure is user defined data type, which is used to store
dissimilar / heterogeneous data type under unique name. Keyword ‘struct’ is used to declare
structure data type. In structure all elements are public by default and referred as “member’ which
must be enclosed within { } and the name given to structure is called as ‘structure tag’.

9.1 Syntax to define Structure

struct structure name
{
structure element 1;
structure element 2;

structure element n;
} structure variable list;

Example

struct student

{
char name[30] ;
char coursel[5];
int age;
int year;

}i

This defines student as a new user defined data type. The variables of type student can be declared as
follows.

struct student si;

Note: declaring variables of type student is similar to declaring them as int or float. Variable can be
declared at the end of definition of structure as follows:

struct student
{
char name [30];
. char course[5];
int age;
int year;
si;

e variable name is s1, it has members called name, course, age and year.

|
Data Strycture UsingC @ . e Basic Concept and Introduction ..

9.2 Accessing Members of a Structure

Each member of a structure can be used as a normal variable and can be accessed using structure
variable name, dot operator and structure member name respectively.

This is as shown below:
sl .name

Here the dot is an operator which selects a member ‘name’ from a structure variable name ‘s1”.
Similarly, we can also declare pointer variables of type student as: '

struct student *s2;

To access a member of structure using a pointer variable of structure, it has its own operator arrow
(=) which can be used as follows.

s2 — name; Or (*s2) .name;

9.3 Structures as Function Arguments

A structure can be passed as a function argument just like any other variable using both pass by
value and pass by reference methods.

When we want to modify the value of members of the structure to be passed as argument, we mus
pass a pointer to that structure. This is just like passing a pointer to an int type argument whose valu
we want to change.

In order to accept structure as parameters the only thing that we have to do when declaring the
function is to specify in its parameters the element type of the structure with pointer to it
For example, the following function:

void fun(struct student *sl)
where, fun is a function name which accepts pointer sI as a parameter of type structure student

The syntax can be as follows,
return type function name (struct struct_name *variable name)
Where, return type is any valid data type (like int, float...), function name is a wvalic

identifier, struct is a keyword to mention structure is passed as a parameter, struct_name Is :
valid identifier, * variable name specifies the pointer to structure.

oniceptiand Introduction ..

When a structure is passed as an argument, each member of the structure is copied. This can prove
expensive where structures are large or functions are called frequently. Passing and working with
pointers to large structures may be more efficient in such cases.

/* Program to calculate SI using structure and Pointer.*/

#include<stdio.h>
struct interest
{
int p,n,r;
};
void main()
{
struct interest si;
float calc{struct interest);
float simpintr;
printf("Enter the values of P,N &R \n") ;
scanf ("$d%d%d", &si.p, &si.n, &si.r);
simpintr=calc (si);
printf("Simple interest is %.2f For amount %d For years %d By the rate
%d", simpintr, si.p, si.n, si.r);
getch () ;
}
float calc(struct interest sil)
{
return (sil.p*sil.n*sil.r)/100;

}

Output

Enter the values of P, N and R

1000 1 13

Simple interest is 130.00 for amount 1000. For year 1 By the rate 13

. 5

Apr.15,12, 10 - 2M
Oct. 10,09 - 2M

9.4 Self-Referential Structures . What is Self-referential

Structure?

Self-Referential structure is a structure having one or more of its member as a pointer to structure
itself. Simply, self-referential structure is a structure of which members can refer the same structure.

For example
struct list

{

char data;

struct list *1link;
}o11;

Data Structure UsingC =~ - Basic Concept and Introduction =

In above example structure list contains one member struct list *link i.e. pointer variable of same
structure. Hence structure list can be called as self referential structure.

Difference between Array and Structure

. L « . Structure ..
1. An array is a collectlon of related data Structure can have elements of drfferent types
elements of same type.
2. | An array is a derived data type. A structure is a programmer-defined data type.

3. | Any array behaves like a built-in data | But in the case of structure, first we have to
types. All we have to do is to declare an | design and declare a data structure before the

array variable and use it. ' variable of that type are declared and used.

4. | All elements of array have the same type | Al elements of structure may be
i.e. homogeneous type. heterogeneous.

5. | Elements of array are referred to by its | Elements of a structure are its unique name.
position.

6. | For example: To access 3™ elements of For example: To access value of structure
array ‘Number’ & store value in variable variable ‘book’ having structure element name
‘A’ we can write. as ‘pages’ we can write.
A=Number [2] ; no=book.pages;

7. | Syntax Syntax
data_type array_name[size]; struct structure name

{
structure element 1;
structure element 2;

}structure _variable list;
structure element n;
8. | Forexample: int no[10]; For example
struct book
{
char name([25] ;
float price;
} bl,b2;

Solved Examples

; 1. Write a ‘C’ Program for evaluation of polynomial.

Solution

A ‘C’ program for evaluation of polynomial is as,
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

#define MAXSIZE 10

void main ()

H

Oct. 12,14 — 4M]

int a[MAXSIZE];
int 1, N,power;

Dot Staaue Using @

- Basic Concept and Inroduction ..
tloat x, polySum;
clrscr () ; v
printf ("Enter the order of the polynomial\n") ;
scanf ("%d", &N) ;
printf ("Enter the value of x\n");
scanf ("$£", &x);
/*Read the coefficients into an array*/
printf ("Enter %d coefficients\n",N+1) ;
for (i=0;1 <= N;i++)
{
scanf ("%d",&a[i]) ;
}
polySum = alo0];
for (i=1;i<= N;i++)

{

polysum = polySum * x + al[i];
}
power = N;

/*power- - ;*/

printf ("Given polynomial is:\n");
for(i=0;i<= N;i++)
{ if (power < 0)

{
break;

}

/* printing proper polynomial function®*/

1f (afi]l > 0)

printf (" + »);

else if (alil < 0)

printf{" - w);

else

printf (" n);

printf (¥%dx"%d ",abs(alil),power--);
}
printf("\nSum of the polynomial = %6.2f\n",polySum) ;

}

2, Write a program to accept roll no, name and marks for N
students from the wuser and print the data.
(Use structure array).

Oct.2011 - 4M ’»

Solution

The following program is used to accept the data of N students and print all data on the screen.
#include<stdio.h>
#include<conio.h>

truct stud /*structure definition of representing student information */

g,

¢ 1-4

int rollno;

char name [20];
int subl_marks,subz_marks,sub3_marks,sub4_marks,sub5_marks;
float avg;

bi

void main() /* main function */

{
struct stud s{20]; /* arrays of structure declaration */
int n,1i;

clrscr();
printf ("\nEnter the number of students");
scanf ("%d", &n) ; /* accept the number of students */
for (1i=0;i<n;i++) /* accept all data from n number of students */
{ printf("\nEnter Roll No");
scanf ("$d", &s [i] .rollino) ;
printf ("\nEnter Name");
scanf ("%$s", &s [i] .name) ;

printf ("\nEnter Marks of 5 Subjects") ;
scanf("%d%d%d%d%d",&s[i].subl_marks,&s[i].subz_marks,&s[i].sub3_marks,
&s[i] .sub4 marks, &s[i] .sub5_marks)

/* calculate the percentage marks of each student */
s[i].avg=(s[i].subl_marks+s[i].sub2_marks+s[i].sub3_marks+s[i].sub4_ma
rks+s[i] .sub5_marks)/5;

} ¢
/* print the roll no, name, marks of all 5 subjects and percentage of all
students */ :
for (i=0;i<n;i++)
{ printf ("\n\t\t\t***MARHKSHEET***\n") ;
printf ("\t\tNAME :- %s",s[i].name);
printf ("\t\tROLL NO :- 2d",s(i] .rollno);

printf("\t\n\n\tsubl_marks=%d\n\n\tsubZ_marks=%d\n\n\tsub3_marks=%d\n\n\
tsub4_marks=%d\n\n\tsubS_marks=%d",s[i].subl_marks,s[i].subz_marks,
s[i].sub3_marks,s[i].sub4_marks,s[i].subS_marks);

printf ("\n\n\t\tPERCENTAGE .- %f",s[i] .avg) ;
}
getch();
}/* end of main */

3. Write a ‘C’ program for evaluation of a given polynomial.

e I

Data Structure Using C — — @ - Basic Concept and introduc

Solution

#include<stdio.h>
#include<conio.h>
#define MAX 20
typedef struct

{
float coef;
int exp;
}poly;

void readpoly(poly pl], int n);
void dispoly(poly pl]l, int n);
void main ()
{
poly a[MAX], b [MAX];
int m, n;
printf (“\n Enter the number of m);
scanf (“%d”, &m) ;
readpoly(a, m);
printf (“\n Enter the number of n);
scanf (“%d”, &n);
readpoly (b,n) ;
printf (“\n The Result”);
dispoly(a, n);
}
void readpoly(poly pll. int n)
{
int 1i;
printf (“\n Enter the terms in descending order”);
for (i=0;i<n;i++)
{
printf (“\n Ceof and power %d”, i+1);
scanf (“%f %d”, &plil.coef, pli].exp);
}
}
void dispoly(poly pl], int n)
{
int 1i;
for(i=0;i<n;i++)
printf (“%d.2fx"%d+”, pl[i]l. coef, plil.exp);

}

_ 1
4. Write a ‘C’ program for addition of two Polynomials. [Apr.15, 12 - 4M
Solution

#include<stdio.h>
#include<conio.h>

struct term // structure to define each term in polynomial

{

int exp;

int coeff;
bi
struct polynomial /* structure of polynomial represent number of terms.*/
0 i
struct term al[10];
int n;
b
void main ()
{
struct polynomial p,pl,p3;
int i;
clrscx () ;
printf ("\nEnter no of terms of first polynomial: ");
scanf ("%d"™, &p.n) ;
for(i=0;i<p.n;i++)

|
printf (*\nEnter the %dth term in order exponent and
coefficient: ",i+1);
scanf ("$d%d", &p.ali] .exp, &p.ali] .coeff);
}

printf ("*\nFirst Polynomial is: "y
for{(i=0;i<p.n;i++)

{
printf (" (%dx) *%d +",p.alil .coeff,p.ali] .exp);
} ' .
printf ("\n\nFnter the no of terms of second polynomial: ");

scanf ("%d",&pl.n);
for (i=0;i<pl.n;i++)

{

printf ("\nEnter the %dth term in order exponent and coefficient: ",i+1};
scanf ("$d%d", &pl.a[i] .exp, &pl.ali] .coeff);

}

printf ("\nSecond Polynomial is: ");

for (i=0;1i<pl.n;i++)

{ ‘
printf (" (%dx)*%d +",pl.ali] .coeff,pl.alil .exp};

}

printf ("\n\nAddition is: \n");
if(p.n>pl.n)

p3.n=p.n;

else if (p.n<pl.n)
p3.n=pl.n;
else

p3.n=pl.n;
for(i=0;i<p3.n;i++)
{
if(p.ali] .exp==pl.ali].exp)
{

p3.ali].exp=p.ali] .exp;
p3.a[i].coeff=p.a[i].coeff+pl.a[i].coeff;

if(p3.n==pl.n && pl.ali] .exp>p.ali].exp)
{

p3.ali] .exp=pl.alil .exp;

p3.ali] .coeff=pl.al[i].coeff;

if(p3.n==p.n && p.ali] .exp>pl.alil .exp)

p3.ali] .exp=p.ali] .exp;
p3.ali] .coeff=p.al[i].coeff;
}
}
for(i=0;i<p3.n;i++)
{
printf (" (%dx) ~%d +",p3.ali] .coeff,p3.alil .exp);

getch() ;

' PU Questions
1. What is use of (&) address operator and dereferencing (*) [Oct.15.Apr.15 - 2M]
operator?
2. What is space complexity? How is it calculated? [0ct.2015 — 2M]
3. What s difference between structure and polynomial? [Oct.15.Apr.15 - 2M]
4, What is self referential structure? [Oct.2015 — 2M]
5. What is pointer? What are the operations can be performed on [Oct.2015 — 2M]
the pointer? :
6. What are the different types of data structures? ’ [Apr.15,0ct.14 — 2M)
7. What is time complexity? How it is calculated? [Oct.2014 — 2M]
8. GiYe the formulag for address calculation for row and column [0ct.2014 — 2M)
major representation?

How to calculate count of Best, Worst and Average case? [Oct.2014 — 2M]

[Oct.2012 - 2M]
[Oct.2012 — 2M]
[Apr.12, 10,0ct.10 — 2M]
[Apr.12,10 Oct.10,09-2M]
[Oct.2011 — 2M]
[Oct.2011 - 2M]
[Oct.2011 - 2M]
[Oct.2011 — 2M]
[Apr.2011 - 2M]
[Apr.2011 — 2M)
[Oct.10,Apr.10 — 2M]
[Oct.2009 — 2M]
[Oct.2009 — 2M]

[Oct.2015 — 4M]
[Oct.15.Apr.15 — 4M]
[Apr.2015 — 4M]
[Apr.15,12 — 4M]
[Apr.15, Oct.14 — 4M]

[Oct.2014 — 4M]
[Oct.2012 — 4M]

[Oct.2012 — 4M]
[Oct.2011 — 4M]

{Oct.10, Apr.10 — 4M]

4 Basic Concept and Introduction ...

10. What is Algorithm? State its properties.

11. Whatis ADT for an Array?

12. How to measure performance of an Algorithm?

13. What is Self-referential Structure?

14. Define time Complexity?

15. Define Array. Give its ADT.

16. What are the different ways to represent polynomial?

17. What is the difference between Malloc and Calloc?

18. Define Algorithm.

19. What is primitive data structure?

20. Explain in brief the functions of Dynamic Memory Allocation.

21. Define ADT (Abstract Data Type).

22. Whatis Array?

4 Marks S

1. What is algorithm? Explain its characteristics in detail.

2. Explain different types of Asymptotic notations in detail.

3. What is an algorithm? How to measure its performance?

4. Write a “C” program for addition of two polynomials.

5. Explain different types of dynamic memory allocation
functions.
Write a ‘C’ Program for evaluation of polynomial.

7. Explain Dynamic Memory Allocation Functions with their
Syntax.
Write a ‘C’ Program for evaluation of polyflomial.
Write a program to accept roll no, name and marks for N
students from the user and print the data. (Use structure array).

10. Write a ‘C’ program for evaluation of a given polynomial.

(e.g. 2> +x +3).

(7
VISION

CGlhapten 2
SEARCHING AND

SORTING
TECHNIQUES

1. Introduction

Searching is a technique to locate a position of a particular item in a list. In real applications, the list
is implemented as an array and the goal is to find a particular element. An element can be searched
by matching the list with element.

There are two types of searching technique: linear search and binary search.

2. Linear Search

Linear Search is the simplest and most logical method used for
searching. It can be applied for sequential storage structures like

files, arrays or linked lists. L -
. . . . Apr.2012 - 2M
Linear Search is more efficient for the applications when data is Explain Linear Search

unsorted. method.

Data Structure UsingC @ . Searchirig and Sorling Techniques

It is usually very simple to implement, and is practical when the list has only a few elements, or
when performing a single search in an unordered list. :

T

When many values have to be searched in the same list, it often pays to pre-process the list in order
to use a faster method.

As this method does not require additional memory so insertion and deletion can be easily done in
method. This method will more efficient for the applications which are used on small to medium
sized lists.

In this technique procedure used is to check the first item, then the second item, and so on until you
find the required element or reach the end of the list. As the linear path is followed to check the
element i.e. from first element to the last one in the list, this technique is called as linear
(or sequential) search. ‘

Main steps of Linear Search

Assume an array called list is having positive integers. The task is to search for the location of the
number that is the value of a variable target. Hence to search for the location of target in list, linear
search will work like: -

location = 0;

2. while ((location is less than size of list)
if(element at location is not a target))
increment the value of location
clse
loéation = position of target in original list
return location as the result
end while

/* Linear Search Program */

#include<stdio.h>

#include<conio.h>

void main ()

{
int list[5]={10,20,30,40,50},1i,target;
clrscr();
printf ("Enter element to search:-");
scanf ("%d", &target) ;

for (1=0;1<5;i++)

{

~ DataStuctureUsingC = @ : — Searching and Sorting Techniques

if(list[i]==target)

{
printf ("Element found at position:%d",i+1);
break;

}
if(i==5)
printf ("Element not found") ;
getch() ;
}

A loop is rotated to search the target in the array. The target can be anywhere in the array or perhaps
not in it at all. The program must be able to exit the search loop as soon the target is located,
otherwise to search all the items in the array, if necessary.

The 1nitial value of the control variable i is 0 and increments by 1 each time through the loop, since
valid index values range from 0 to the number of items minus one. The loop repeats as long as i is
less than the number of items. The expreésion list[i] == target tests whether the value of the
target variable is the same as that of the current /ist element. This condition allows the loop to
continue if the current element of the list is not the same as the value of farger. At loop exit, either
target has been found, (list[i] == target), or the entire array has been checked without
finding it, and i == size of array. In the former case, location is displayed as the value of i,
while in the latter the message ‘element not found’ will be displayed.

The following table shows an example of the operation of the linear search algorithm. The first row
of the table is the array indices and second row is the data stored at the indexed location and
remaining rows indicates the index values used for location (L), at each iteration of the algorithm.

If the target value is 52, its location is found on the 3" iteration.

5 |6 (7 1819 [10]11]12 13*}14!{1,5']

47 146 (41149 |52 |78 |23 |71 |74 |77 |55

1%iteration | L

2"iteration L

3"iteration L

Efficiency of Linear Search

The efficiency of algorithm depends upon the number of main steps require to finish. But, the exact
number of steps depends on the input data. For the linear search algorithm, the number of steps

Relastmanoionge o @ " Seprching jahd Soting Techniques

depends on whether the target is present in the list, if it is present, where is the location of it in the
list, as well as on the length of the list.

For search algorithms, the main steps are the comparisons of list
Apr.2015- 2M values with the target value. The number of comparisons required to

How to calculate count of locate target in the list, represents the best case, the worst case, and
Best, Worst and Average the average case as shown in the following table. For each case, the
case? : number of steps is expressed in terms of n, which represents the

number of items in the list.

’ *NumbernfCompaﬂsons . 1 G

y

Best Case 1 o(1)
(fewest comparisons) (target is first item)
Worst Case 100 o(n)
(most comparisons) (target is last item)
Average Case 50
(avgge:gsar:;r:::)r of (target is middle item) O(n/2)

The best case analysis doesn't tell us much. If the first element checked happens to be the target, any
algorithm will take only one comparison. The worst and average case analyses give a better
indication of algorithm efficiency.

Notice that if the list grows in size, the number of comparisons required finding a target item in both
worst and average cases grows linearly. In general, for a list of length n, the worst case is n
comparisons. Hence the technique is called /inear search because its complexity/efficiency can be
expressed as a linear function.

3. Binary Search

This technique is more efficient as the list is sorted, for example, in ascending order. A sorted list can be
used to narrow the search as explained below:

The technique of binary search is to check the middle (approximately) item in the list. If it is not the
target and the target is smaller than the middle item, the target must be in the first half of the list.
If the target is larger than the middle item, the target must be in the last half of the list. Thus, one
unsuccessful comparison reduces the number of items to be checked by half.

Once, the required half is identified, the search continues by checking the middle item in the
particular half of the list. If it's not the target, the search narrows to the half of the remaining part o

Data Structure UsingGo S S——— Searchihg;and Sarﬁﬁg“{eghﬁiques

; the list. This splitting process continues until the target is located or the remaining list consists of
only one item. If that item is not the target, then it's riot in the list.

The main steps of the binary search algorithm can be written as:
1. Location=~1; -
ii. While ((more than one item in list) and (haven‘t yet found target))
a. Look at the middle item
b. If (middle item is target)
have found target
else
c. If (target < middle item)
list = first half of list
d. else (target > middle item)
list = last half of list
end while

iii. If (have found target)

location = position of target in original list

iv. Return location as the result

Iterative Implementation of Binary Search

/* Binary Search Program iterative */

#include<stdio.h>
#include<conio.h>
void main ()
{
int list[5]1={10,20,30,40,50},1i, target;
int first,middle, last;
first=0;last=4;
clrscr();
printf ("Enter element to search:");
scanf ("%d", &e) ;
while(first<=last)
{
middle=(first+last)/2;
if (target==1ist [middle])

Data Structure Using G -

‘Searching and Sorting Techniques

printf ("Element found at position:%d",middle+1);

break;

if (target<list[middlel])
last=middle-1;
if (target>list[middle])
first=middle+i;

if(first>last)
printf ("Element not found");
getch () ; '

}

Two integer variables, first and last, record the first and last index values for the part of the array
remaining to be searched. The integer variable, middle, stores the middle position between first and
last. Each time through the loop, the target is compared to the middle item. If the target is less than
the middle item, the next iteration searches the lower half of the current part of the array by setting
last to the position just before middle. Thus, the next part to search is from positions first to
middle -1. If target is greater than the middle item, the next iteration searches the upper half of the
current part of the array by setting first to the position just after middle. Thus the next part to search
is from middle + 1 to last.

The search ends when the target item is found or the values of first and last cross over, so that
last<first, indicating that there are no array items left to check.

Recursive Implementation of Binary Search
This technique can also be implemented using recursive function as follows:

/* Binary Search Program recursive */

#include<stdio.h>

#include<conio.h>

void main ()

{
int arr([5]={10,20,30,40,50},1, target;
int first,middle, last;
int binsrch(int [],int,int,int);
first=0;last=4;

Data Struicture Using & - Searching and Sorting Techniques

clrscr();
printf ("Enter element to search:-");
scanf ("%d", &e) ;)
i=binsrch(arr,first, last, target)
if(i==-1)
printf ("Element not found");
else
printf ("Element found at position:-%d",i+1);
getch() ;
}
int binsrch(int list{],int low,int high, int x)
{
int mid;
if (low<=high)
{
mid=(low+high) /2;
if (x==1list[mid])
return mid;
if (x<1list [mid])
binsrch(list, low,mid-1,x) ;
if(x>1list[mid])
binsrch(list,mid+1,high,x);
}
return -1;

}

In this technique, a recursive function binsrch is declared with four arguments as
int list[], an array in which the target is to be located,

int low as lower bound and

int high as upper bound of a part in which the target is to be located and

int X, a target element to be searched.

Initially, function binsrch will be called with main array i.e. list[5] where lower bound is 0 and upper
bound is 4 (i.e. size — 1). The function will calculate the middle posmon of the array and will
compare element with it.

If the target is less than the middle item, the function will be called again to scarch the lower half of
e current part of the array by setting high to the position just before middle. Thus, the arguments

Data Structure UsingG - ‘Searching and Sorting Techniques

for low and high to the function will be low and middle -1 respectively where remaining arguments |
i.e. list and x will be same. If target is greater than the middle item, the function will be called again l
to search the lower upper half of the current part of the array by setting low to the position just after
middle. Thus, the arguments for low and high to the function will be middle +1 and high respectively
where remaining arguments i.e. list and x will be again same.

The following table shows an example of the operation of the binary search algorithm. The first row
of the table is the array indices and second row is the data stored at the indexed location and
remaining rows indicates the index values used for first (F), last (L) and middle (M), at each iteration
of the algorithm. If the target value is 52, its location is found on the 3" iteration.

Data

1% iteration | F M L
2" iteration | F M L
3" iteration F|MIL

Efficiency of Binary Search

To evaluate efficiency of binary search, we have to count the number of comparisons in the best case
and worst case. The average case, which is a bit more difficult, is omitted.

The best case occurs if the middle item happens to be the target. Then only one comparison is
required to find it.

The worst case will occur if the target is not in the array and the process of dividing the list in half
part continues until there is only one item left to check. Here is the pattern of the number of
comparisons for an initial array having length as an even power of 2 (64).

ltems Left to Search | Comparisons So Far

=N R
O iWIN|-—

Daasuoymleigel Searching ond sorting Techinigues

For a list size of 64, there are 6 comparisons to reach a list of size one, given that there is one
I comparison for each division, and each division splits the list size in half. It can be represented as
6 = log,64

In general, if n is the size of the list to be searched and C is the number of comparisons to do so in
the worst case, C = log,n. Thus, the efficiency of binary search can be expressed as a logarithmic
function, in which the number of comparisons required to find a target increases logarithmically with
the size of the list.

The following table summarizes the analysis for binary search.

/ uypber of Comparisons Comparisons as a function of n

Best Case T 1

(fewest comparisons) (target is middie item) 1
Worst Case 16 lodon
{most comparisons) (target not in array) 92
4. Sorting
Sorting is used to arrange the data in a meaningful order. The order 1
can be implemented according to the type of elements. If elements i R0t ohy
are of alphabetic type the order will be ascending (from ‘A’ ‘Z’) or DZfri'ne Sor‘;ing.'

descending (‘Z’ —‘A’). Similarly if elements are of numeric type,
order will be ascending (from lowest value to highest value) or
descending (highest value to lowest value).

So, accordingly sorting order can be ascending or descending, immaterial of type of elements.

For example, it is relatively easy to look up the phone number of a friend because the names in the

phone directory are sorted in alphabetical order. This example clearly indicates that, sorting greatly
improves the efficiency of searching. Because, if we want to find the names in any logical ordgh,it

will take a long time to look up that phone number., 1
o - Oct.2015- 2M
For simplicity we have considered the integer elements to be sorted What is difference
in ascending or descending order. Consider the following array. between sorting and
searching?

Sorting can be defined as arrangement of elements in a specific order.

Data Structure Using &+ - @ Searching and Sotting Technigues

Unsorted array Ascending Order Descending Order

12 (37845 | 21 8112(21]37 (45 45137 (2112 |8
0o 1 2 3 4 01 2 3 -4 0 1 2 3 4

Hence, from the above example, it is observed that original array will be rearranged to place

elements at their appropriate position depending upon sorting order.

Hence, in sorting method elements will be reshuftled and placed at appropriate position according to
their value as compared with others. Sorting can be performed in many ways. Several methods can
be used to sort information using different algorithms. Some examples of these algorithms are the
Selection Sort, the Insertion Sort, the Bubble Sort, the Quick Sort, and the Radix Sort. There is no
sort algorithm that is clearly better than all others in all circumstances. While selecting the particular
algorithm, the factors like complexity of the algorithm, the size of the data structure (an array) has to

be considered.

We focus on the Bubble Sort, the Selection Sort, and the Quick Sort. The bubble and selection sort
algorithms are very simple. Quick Sort is more complex, but it is highly efficient.

4.1 Sorting Techniques

;33 The array can be sorted by applying various techniques as

AprA2.10 - 20 \ mentioned below:

What is sorting? State

; : 1. Bubble sort
various techniques of

Sorting. il. Insertion sort
Oct.2010 - 2M
State different types of ili. Selection sort

\Sorting Technigues /

iv. Quick Sort

The techniques are different in the way they are rearranging the elements. Each and every technique
will be compared with particular element from rest of the elements or all the remaining elements to
decide the appropriate position of them. We will discuss the techniques in detail.

Data Structure Using C @ e Seayching and Sorting Techniques

5. Bubble Sort

this technique, the element will be compared with its immediate next element i.e. the elements are
dpmpared in adjacent pairs like (0, 1), (1, 2), (2, 3), (3, 4) etc. depending upon number of elements in
an array. So, pair having two elements is to be considered as previous element and next element.
While comparing these elements in pair, the elements will be interchanged if previous element is
eater than next element.

en all the pairs will be compared for first time the largest element will be place at the end of an
rray.

onsider the example,

nsorted Array

| 8 J12]21]37] 45]

U 8 122137]45]

| 8 [12] 2137]4a5]

s the array is having 5 elements there will (5 — 1) i.e. 4 pairs should be compared. Hence, the pairs
n be calculated by size —1. Similarly, when all the pairs will be compared and elements are
terchanged whenever required, we can find largest element at the end of an array. Hence
mparing pairs for only single time is not sufficient. Then how many times we should compare it?

Here 45 is the largest element among all the 5 elements and will be placed at the last. But also 37 is
second largest among remaining 4 elements. Hence, each and every element is having its own
significance according to its value as compared with others and place these elements at their
appropriate places we have to compare the pairs equal to the number of elements in an array.

Hence, to implement bubble sort technique for an array having n elements, we have to compar%
(n— 1) pairs for n times. |

Though in given example, the array is sorted in 2™ step itself, we have to consider next comparisons

also as number of comparisons required will be totally depending upon the initial array in which
some elements could be at their appropriate position initially or in few steps.

Algorithm
i Consider the first adjacent pair of elements. ,
ii. If previous element in pair is greater than next element, exchange the values of them.

iii. Consider next pair and repeat step no 2 for all the remaining pairs.
iv. Repeat step no. 1 equals to the number of elements in an array.

#include<stdio.h>
#include<conio.h>
void main()
{
int al[5]={12,5,32,18,10},1i,J.p,t;
clrscr () ;
for (i=0;i<5;1i++)
{ for(j=0;j<4;j++)
{ if(aljl>alj+1l)
{ t=aljl:
afjl=alj+1l);
alj+1]l=t;

}
printf ("Sorted array:-\n");
for (1=0;1<5;1i++)
printf ("%d\n",alil):
getch() ;
}

RalastucmielisingCo - Searching and Sorting Techniques

6. Insertion Sort

In this technique, the element at a particular position will be compared with all the previous elements
i.e. 1" element is compared with 0™, 2" will be compared with 1* and 0™ and so on depending upon
number of elements in an array. The element which is to be compared with its previous element is
considered as a Pivot element. While comparing these previous elements, if any of them is greater
 than the pivot element, that element will be moved to its next position and finally pivot element will

be inserted at its appropriate position. Consider the example
2

Unsorted array Apri2, Oct11-4M

Explain Insertion Sort

121 37 I 8 | 45 T 21 with an example.
12377874521
A STA

8 Y12 37457 21 |
v

8§ [12 [37] 45 [21

$ [12 [21TF37] 45

| As we are going to compare previous element, we should start with the element at 1% position as
| pivot element and compare it with the element at 0" position. Similarly 2™ will be compared with 1
' and 0" and so on depending upon number of elements in an array. While comparing previous
elements, if any of the pivot element is smaller that element will be placed in its next position and at
the same time position of pivot will be decreased. Though position of pivot element is decreased, it
is not immediately placed at that position till all the previous elements will be compared. Once, all
the previous elements will be compared, the pivot will be inserted at its proper position,

To apply Insertion sort technique to an array having n elements, the

. Apr.2015- 2M 4
p1yot elements will be E.lt positions 1,2,3...n—1 .and will be compared Compare the efficiency
with the elements previous to them i.e. from i-1 to 0, where is the of Bubble Sort with
position of pivot element. : Insertion Sort?

Again, the number of comparisons required will be tdtally dependent upon the initial array in which
some elements could be at their appropriate position initially.

Algorithm

i. Consider the second element as pivot element.

ii. Compare it with previous elements.

iii. If previous element is greater than pivot element place it at next position.
Decrement the position of pivot element.

iv. Repeat step no. 3 for all the previous elements.

v. Insert pivot element at its decremented position.

vi. Consider next element as pivot element.

vii. Repeat step no.2 up to the last element in an array.

#include<stdio.h>
#include<conio.h>
void main()

{
int afs5]={12,5,32,18,10},1,3,p,t;
clrscr();
for(i=1;i<5;1i++)
{
p=alil;
t=1i;
for(j=i-1;j>=0;j—-)
{
if(aljl>p)
{
alj+1l=aljl;
t--3;
}
}
altl=p;

}

printf ("Sorted array:-\n");
for (1=0;i<5;1i++)
printf("%d\n",alil);
getch() ;

7. Selection Sort

This technique selects the largest element and puts it in the position

of higher index. Then it finds the next largest and places it to second %.:ggeie%onsm .

last position and this technique will be followed until the array is
sorted. To put an element at its appropriate place, it will be swapped
with the element already present at that position. As a result, the
array will be sorted from the end position of the array up to first

position.

Consider the example;

In this method, the element at the highest index i.e. 4 is considered and it will be compared with all
the remaining elements i.e. 0 to 3 and actual highest element will be found. The highest element and
the element at highest index (4) will be swapped. Hence, in this method the highest element will be
placed at highest index. Then element at previous highest index i.e. 3 is considered and again actual
highest element from remaining elements will be placed at this position.

So the highest elements will be placed from highest index to lowest index.

Algorithm

i Consider the element at highest index as max element.
ii. Compare it with all the remaining previous elements.
iii. - If any element is greater than max element.

Consider it as max element and store its position as ‘pos’.

Data Structurs USing =

—— Searching and Sorting Techniques

iv. Swap the elements at the position of highest index and element at pos.
v. Consider previous index of highest index as next highest index.

vi. Repeat step no. 1 up to the first index.

#include<stdio.h>

#include<conio.h>

void main()

{
int a[5]:{12,5,32,18,10},i,j,p,t;
clrscr();
for (i=0;1<5;1++)

{
p=alil;
for (j=i+1;3<5;j++)
{
if(aljl<p)
{
t=p;
p=aljl:
aljl=t;
}
}
alil=p;

}
printf ("Sorted array:-\n");
for (i=0;1<5;1++)
printf ("sd\n",alil);
getch();

8. Quick Sort

3 .

ﬁ Quick sort is a very efficient sorting technique which sorts the array

- Apr.2015- 2M in two ph: .

o phases:

Explain Quick sort . .. h d
technique with an L. Partition phase an
example: ‘ 11. Sort phase.
Oct42. 09 — 4M In partition phase, we divide the array of items into two partitions
&4 ¥ . o, .
Explain Quick sort with and then recursively sort the two partitions in sort phase, i.e. we
\an example. o divide the problem into two smaller parts. The sort phase simply
o o sorts

@

the two smaller p that are generated in the partition phase. This makes Quick Sort a good example of
the divide and conquers strategy for solving problems.

As we will see, most of the work is done in the partition phase - it works out where to divide the
work. The sort phase simply sorts the two smaller problems that are generated in the partition phase.

In this technique the partition phase must arrange all the items in the lower part and less in the upper
paﬂ To do this, we select a pivot element and arrange all the items which are less than the pivot in
ithe lower part and all those greater than it in the upper part. In the final step, the pivot is dropped and
then lower part as well as upper parts is divided individually by using same technique.

Quick sort: Example

P | dn | —d—-] up

R up | dn

P
Repeat Steps for Partition 1 and Partition 2
Partition 1 Partition 2
21 [4]37s 517 I8
P |dn Up Pldn]up

artition Phase

1. In this example, to make partition, the element at lowest index is considered as pivot element.
The position of element next to it is considered as down (dn) and the position of last element
is considered as up(up). Firstly, the pivot element is compared with element at down(dn)
position. If pivot element is greater than element at down, the position of down(dn) will be
incremented and same step will be repeated for the element at down(dn) position.

If the element at down(dn) is greater than pivot, the pivot element will be compared with
element at up position. Now condition is exactly reversed as if pivot element is less than
element at up position, the position of up will be decremented and again step will be repeated
for the element at up position.

Data Structure Using © - _———— Searching and Sorting Techhiques

Due to above steps, both down(dn) and up(up) will cross each other. Then pivot element anc
element at up will be swapped. But in some cases they will not cross each other as some
clement can be greater than pivot and some element at up is less than pivot. In this situatior
the element at down(dn) and up(up) should be swapped and whole process is repeated again
Hence, pivot element is placed at such position where left part elements are less than the pivo
and elements at right will be greater than pivot. ‘

3. Now by skipping pivot element, we will get two separate partitions. |

Sort Phase

In the sort phase, both these partitions are sorted separately using above partition phase. Hence usin;
both the phases array is divided into discrete no. of partitions, where each partition is having onl
single element which will be placed at its appropriate position and thus whole array will be sorted b,
recursively applying partition phase and sort phase.

The recursive algorithm consists of four steps

i. If there are one or less elements in the array to be sorted, ha
Oct.2011 - 4M and exit. '
Write an algorithm for ii. Pick lefi-most element in the array as a ‘pivot’ element.

Quick sort (use

recursion). jii. Split the array into two parts where left part is havin

elements larger than the pivot and the right with element
smaller than the pivot.

iv. Recursively repeat the algorithm for both halves of th
original array.

Example
#include<stdio.h>
#include<conio.h>
void main ()
{
int a[5]:{12,5,32,l8,10} ,1b,ub,i;
void quicksort(int [],int,int);
clrscr ();
1b=0;ub=4;
quicksort{a,lb,ub);
printf ("Sorted array:-\n");
for (1i=0;1<5;1++)
printf ("sd\n",alil);
getch();

Data Structure UsingC =~ = @ Searching and Sorting Techniques

void quicksort{int afl],int 1b,int ub)
{
int p,dn,up, t;
if (1b<ub)
{
dn=1b;up=ub;
p=aldn];
while (dn<up)
{
while(p>=aldn])
dn++;
while(p<alup])
up- - ;
if (dn<up)

t=al[dn] ;
a[dn] =alup];
alupl]=t;

t=a{lb];

allbl=alup];

alupl=t;
quicksort(a,lb,up-1);
quicksort (a,up+l,ub)

Oct.2014 - 2M'
Explain Heap sort
9. Heap Sort technique with an

example.

The Heap Sort method of sorting uses the data structure-binary tree. This procedure is based on a
special type of binary tree called a heap.

Definition of heap

A heap of size ‘n’ is a binary tree of ‘n’ nodes such that,

i. all the leaves of the tree are on adjacent levels

Detg StuatsingC.

ii. all the levels except the lowest level are full

iii. the key in the parent is greater than or equal to the keys in the children.

This implies that the largest element is in the root node.

Example

Algorithm

Due to the heap property that all levels except the last are filled, we can organize the data in a

sequential manner.
The root is at position 0 followed by its children.

Example

The first tree shown above can be represénted as

1513111171

10

1. top =0, last =n-1

2. Build a heap out of data [top] to data[last]

3. Interchange data [top] and data[last]

4. last=last—1

5. Repeat from 2 as long as last > 0.

Let us first see how to create a heap. If the keys are

26 5 77 1 61 11 80 IS5

Data Structure Using C e m Searching and Sorting Techniques

We first create a binary tree by successively adding elements to the left and right subtrees.

(29
ONNG
ONCIONC
: (19
Binary Tree of unsorted elements

This tree is not a heap. Hence, we have to convert it into a heap by the following transformations.

Build Heap

If the keys in the children is greater than the parent node, the key in the parent and the greater child
are interchanged.

We shall now consider sample data to be sorted using the heap sort procedure.
Data: 26 5 7 1 61 11 59 15

Iteration 1

Loet=7 OIS
@ @ OO0 @
teration 2 Build heap Swap
%6
Top=0

Last=6 @ @

Iteration 3 Build heap Swap

Top=0
Last =5

Build heap

iteration 4

Data Structure Using C - Searching and Soning Techniques

iteration 5 Build heap

Top =0
Last=3

lteration 6 Build heap Swap

Top=0
Last =2

Iteration 7 Build heap Swap

Top=0
Last =1

Heap Sort

At this stage the keys in the tree are in the sorted order.

Algorithm for Heapsort
1. Start

2. Accept n elements in array data.

Searching and Sorting Techniques

3. Convert data into a heap

fori=n/2to 0
Heapify (i,n)

last=n-1,top=0.

Interchange data [top] and data [last]
last =last — 1

Heapify (top, last), i.e. recreate heap
Iflast> 0

goto 5

9. Stop

© N e

The procedures Heapify will create a heap with root i having children at position 2i + 1 and 2i + 2.

The steps will be as follows:

Algorithm for Heapify

1. Start

2 key = data [i]

3. j=2%+1

4 If data [j] < data [j+1]
j=j+1

5. If key > data [j]
goto 8
0. Interchange data [i] and data [j]

7. Heapify (j,n)
8. Stop
Efficiency of heapsort

If the tree has k levels with 21_1 nodes on level i, then the initial creation of the heap will take
time = the sum of nodes on each level * the number of levels the node can move.

ie. > 27 (ki) ~0(n)

i<i<k

. Sesriing sad Soding Tachniques

The next loop calls Heapify n—1 times.
Each call to Heapify takes O(log n) time.

" Hence the total computing time 0(n log n).

In the average case, quicksort is better but in the worst case, heapsort is much better than quicksort.

10. Merge Sort

Merging is the process of combining two or more sorted data lists into a third list such that it is also
sorted.

For example, if the two sorted arrays are:
Array1: 3 5 10 23 56
Array 2: 4 6 9 60

The merged array will be

Array3: 3 4 5 6 9 10 23 56 60

Merge Sort is based on the above process of merging. In this process, a list is divided into two sub-
lists which are sorted individually and then merged. To sort each sublist, it is further divided into two
sub-lists and the process continues till sub-lists of size 1 are obtained. Since a list of size 1 is sorted,
we can merge adjacent disjoint pairs of sub-lists. The merging process continues till only one list of
size n is obtained.

Strategy
Merge sort follows the Divide and Conquer strategy
1. Divide: Divide an n element sequence into n/2 subsequences.

2. Congquer: Sort the two sequences recursively.

3. Combine: Merge the two sorted sequences into a single sequence.

Data Structure UsingC Searching and Sorting Techniques

Algorithm for Merge Sort
Start

1

2 A is an array of ‘n’ elements.

3. low=0,high=n-1

4 if (low < high) i.e. if the array can be partitioned
mid = (low + high)/2 //mid is the middle position
MergeSort(A,low, mid) // sort the first half
MergeSort (A,mid+1, high) // sort the second haltf
Merge (A, low,mid, high) ; //Merge the sorted halves

5. Stop.

Example,

Let us consider an example of sorting 8 elements

a[8] = (25,57,48,37,12,92,86,33)

{25 57 48 37 12 92 86 33] Unsorted List
{25 57 48 37] [12 92 86 33] Divide into two halves
{25 571 [48 37] [12 92] [86 33] Divide into two halves

5] [571 48] [371 [12] [92] [86] [33] Divide into two halves
\ / \\ / \ / \ / Merge sorted sublists
[25 (12 o2 33 66

/ \ . / Merge sorted sublists

[25 37 48 57] {12 33 86 92]

\ / Merge sorted sublists

12 25 33 37 48 57 86 92]

The following program gives the recursive procedure to sort n elements in the ascending order.

-
<= Merge Sort

void Merge {(int al[l, int low, int mid, int high)
{ .
/*Merge allow]..almid] and a[mid+1]..alhigh] into a sorted list
Store the sorted list in afllow]. .a[high}

Data Structure Using © -+ =+, Searching and Sorting Te

b is a temporary array for merging */
int i,3j,k, b[20];
i = low; J = mid+1; k = 0;
while((i <= mid) && (j <= high))
(,
if(alil < aljl)
blk++] = al[i++];
else
blk++] = a[j++];
} .
while (i <= mid)
blk++] = ali++];
while (j <= high)
blk++] = al[j++];
/* Copy merged elements from b to a */

for(j = low, k = 0; j<=high ; j++, k++) //

aljl = blk];
}
void MergeSort (int al[l, int low, int high)
{
int mid;

i1f (low < high) //more than one element

{

mid =(low + high) /2; // Divide a into two sublists

MergeSort(a, low, mid); // Sort first sub list
MergeSort(a, mid+1, high); // Sort second sub list
Merge(a, low, mid, high); //Merge Sorted sub lists

}

void main ()

int al20], i, n;

printf ("How many numbers :");

scanf ("%d", &n) ;

printf("\ﬁEnter the ﬁnsorted numbers :");
for (i=0;i<n;i++) -~

scanf ("%d", &alil);

MergeSort(a,0,n-1);

printf ("\nThe sorted list is ");

for (i=0;i<n;i++)

printf ("sd\t",alil);

Time Complexity of Merge Sort
The best case and worst case time complexity of Merge sort is O(n lagn).

In each step, the array is divided into two equal sublists. This takes O(logyn) time. In each step, a
total of n elements are merged in the sublists. Thus, the total time taken is O(n log;n). This can be
proved as follows:

T(n) = Time taken to sort 2 sublists of size n/2 + time taken to merge. This can be written as:

T(n) = { 2aT i-f n=1,a i.s a constant
(n/2) +cn if n>1, c is a constant

When n is a power of 2 i.e.n= 2k, this equation can be solved as follows:
T(n) 2T(n/2) + cn

= 2(2T(n/4) + cn/2) + cn

= 4T(n/4) +2cn

= 4(2T(n/8) + cn/4) + 2cn

= 8T (n/8) + 3cn

k K
= 2 T(n/2) +ken

= an+cn logzn

~ 0(nlogn)

Data Structure Usinge. =

Advantage of Merge Sort _
1. It is a very efficient method since its best and worst case time complexity is O(n log,n).

Limitations of Merge Sort
1. Additional memory is required for the merging process. It is not in-place.
2. Stack space is needed due to recursion.

11. Comparison of Sorting Methods

We have studied various sorting methods. If we have to choose one method to sort n elements, we should
compare the methods and then make the selection. The choice of a method should be done on the basis of
various criteria like the number of data elements, time complexity and space complexity.

The following chart summarizes the sorting methods studied so far.

[E?Me‘th‘od Time Complexity { _ Space Complexity } : . Remarks = &
/2 . Original Bubble Sort method has a time
Bubble \?\f ;tstog(n)z) g:r(‘ilt(l)c:gal Sr:,zcr;&gg f?sr complexity of O (nz). Only the modified version
’ re L?ire dr{ln lace) has a best case comylexity of O(n). Stable
q -anp method
Space depends upon | Uses Divide and Conquer strategy. There is a
Quick Best:O(n logz n) number of nested | large performance difference in the average
Worst : O(n?) recursive calls or size of | and worst case. Non recursive implementation
the stack. (In place) is complicated. Not stable.
Additional memory | Better than Bubble sort. Performance largely
Insertion Best : O(n) required only for | depends upon the ordering of data. Better
Worst : O(nz) temporary variables. (In | performance when data elements are almost
- place) sorted. Stable method
Besft ?’O(n logz n) Add‘iponal storage fqr pses divnde_ and' conquer, _non recursive,
Merge “Worst : O(n | auxiliary array is | implementation is complicated. Stable
orst : O(n logzn) required. (not In place) method.
Solved Examples
1. Sort the following data using Merge Sort. 1

Show each step in detail: 25, 35, 18, 9, 46, 70, 48 [0ct.2012 — 4M

Solution

R
onsider an array 4 with » indices ranging fromA4gtod, ;. We apply merge sort
0 A(Ay...Ac1) and A(A....A,-,) where c is the integer part of n/2. When the two halves are returned

hey will have been sorted. They can now be merged together to form a sorted array.

Steps for given data to apply the merge sort is,

251 35| 181 9 |46 | 70 | 48
/ \
2513184 9 46 | 70 | 48
| \ VRN
25 354 181 9 48 | 70 48
VSN L
25 35 18 9 46 70 48
VS A
25 | 35 9 18 46 | 70 48
9 18 | 25 | 35 46 | 48 | 70
/
9 18 | 25 | 35| 46 | 48 | 70
2. Sort the following data usiné Bubble Sort show each

Solution

The basic idea behind Bubble sort is to pass the list sequentially several times.
In each pass compare successive pairs of elements (x[i] with x[i+1]) and interchange the two
elements if they are not in required order. One element is placed in its correct position in each pass.
In subsequent passes, we consider one element less that the previous pass. A total of n-1 passes are
required to sort ‘n’ keys. In first pass, the largest element will sink to the bottom, second largest

element in the second pass and so on.

step in detail: 108, 97, 71, 23, 12, 57, 93, 100

Start comparing from first pair of elements from the given data as follows:

The given data is
108, 97, 71, 23, 12, 57, 93, 100

Deta Strioure Usng O Searching and Sorting Techniaues

Pass 5:

12—] 12 12 12
23_1[23— [23 23
57 |57 |57 1|57
71 | 71 711|711
93 |93 93 93
97 |97 97 97
100 {100 [100 | 100
108 [108 | 108 | 108

Pass 6:

12— | 12 12
23 23— |23
57 57 57
71 71 71
93 93 93
97 97 97
100 100 | 100
108 108 | 108

Pass 7:

12— (12
23_| |23
57 57
71 7
93 93
97 97
100 | 100
108 | 108

Werite a program to accept N numbers from the user and

Oct2011-4M 3. ‘
sort using merge sort.

Solution

This merge sort method follows divide and conquer algorithm.
ftinclude<stdio.h>
#include<conio.h>
#define MAX ARY 10
void merge sort{int xI[], int end, int start);
void main () /* main function */
{
int ary [MAX_ARY]:
int j = 0;
printf ("\n\nEnter the elements to be sorted: \n") ;
for (j=0;3j<MAX_ARY;j++)
scanf ("%d", &aryl[il);
printf ("Array before Mergesort :");

®

ot

for(j = 0; j < MAX_ ARY; j++)
printf (" %d", aryl[jl);
printf (*\n") ;
merge_sort(ary, 0, MAX ARY - 1);
printf ("After Merge Sort :");
for(j = 0; j < MAX_ARY; j++)
printf (" &d", aryl[jl);:
printf ("\n") ;
getch () ;
} /* end of main function */
/* Method to implement Merge Sort*/
void merge_sort(int xI[l, int end, int start)

{ int j = 0;
const int size = start - end + 1;
int mid = 0;
int mrgl = 0;
int mrg2 = 0;

int executing[MAX_ ARY];
if(end == start)
return;
mid = (end + start) / 2;
/* recursive call to the merge sort function */
merge_sort(x, end, mid) ;
merge_sort(x, mid + 1, start);

for(j = 0; j < size; j++)
executing[j] = x[end + jl;
mrgl = 0;

mrg2 = mid - end + 1;
for(j = 0; j < size; j++)
{ if(mrg2 <= start - end)

if(mrgl <= mid - end)
if (executing[mrgl] > executing[mrg2l)

x[{j + end] = executing[mrg2++];
else
x[j + end] = executinglmrgl++];
else
x[j + end] = executinglmrg2++];
else
x[J + end] = executing[mrgl++];

}

}1/* end of merge sort function*/

4. Sort the following numbers in an ascending order using
Heap Sort Method: 23, 15, 29, 11, 01, 07

Solution
Step 1: Create a Heap

Empty 23

23 15

25,15 29 23,29
29,15,23 11

29,15,23,11 01

29,15,23,11,01) 07

29,15,23,11,01,07

Data Structure Using € - Searching and Sorting Techniquies

Step 2: Sorting

29,15,23,11,01,07 29,07 - | interchange 29 and 7 in order to

delete 29 from heap
7,15,23,11,1 29 Delete 29 from heap and add into
sorted array
23,15,7,11.1 7,23 . 29 interchange 7 and 23 as they are not
in order in the heap
1,15,7,11,23 23,1 29 interchange 23 and 1 in order to
delete 23 from heap
1,15,7,11 23 Delete 23 from heap and add into
sorted array
15,1,7,11 1,15 23,29 interchange 1 and 15 as they are not
in order in the heap
15,11,7,1 1,11 23,29 interchange 1 and 11 as they are not
in order in the heap
1,11,7,15 15,1 - 23,29 interchange 15 and 1 in order to
delete 15 from heap
1,117 15 Delete 15 from heap and add into
sorted array
11,17 1,11 15,23,29 interchange 1 and 11 as they are not
in order in the heap ‘
71,11 11,7 15,23,29 interchange 11 and 7 in order to
delete 11 from heap
7.1 11 Delete 11 from heap and add into
sorted array
1,7 7.1 11, 15,23,29 | interchange 7 and 1 in order to
delete 7 from heap
1 7 11, 15,23,29 | Delete 7 from heap and add into
: sorted array
Empty 1 7,11, Delete 1 from heap and add into
‘ 15,23,29 sorted array
Empty 1,7, 11,
15,23,29

The sorted numbers are: 1,7, 11, 15, 23, 29.

5. Sort the following data, using insertion sort (show each
’ step) in descending order: -5, 8, 12, 64, 5, 88
Apr.11, Oct.10 ~ 4M Solution
L Sorting using insertion sort in descending order
Elements/values: -5, 8, 12, 64, 5, 88
Step 1: Compare 2nd element with 1st, as 8 > — 5, swap it.
..8-51264588

Step 2: Compare 3rd element, i.e., 12 with 1st and 2nd elements as 12 > 8, shift it as first element
and move other elements by 1 position.

2

128564588

Data Structure UsingC. @ — ——— Searching and Sorting Technigues

-/
Step 3: Compare 4th element, i.e., 64, as (64>12) shift it as first element and move others to the
next.
5641285588 ,
Step 4: Compare 5th element, i.e., 5 with all previous elements. (5 > —5) and shift it at appropriate
position.
.. 6412855

Step 5: Compare 6th element, i.e., 88, as (88 > 64), add it at first position and move the other
elements to the next.
. 886412855

.. Sorted elements in descending order is 88 64 128 5—5
; : 1

6. Sort the following data, using selection sort in descending
order (show each step: 3, 66,-15,-99,6,27). Apr.2011 - 4M
Solution

Element/values: 3 66 —15 -99 6 27
Step 1: Compare 1” element with all elements and swap if necessary.
a. 663-15-99627
Here, 66 is compared with all next elements. And it is highest element so on need to
swap.
66 3-15-99 627
" Step 2: Compare II™ element with all other next elements and swap if necessary.
663 -15-99 627
a. 666-15-99327(6>3)
b. 6627-15-9936(27>6)
Step 3: Compare III" clement with all elements and swap if necessary.
6627-15-9936
a. 66273 -99-156 (3 >-15)
b. 66276-99-153(6>3)
Step 4: Compare IV™ element with all elements and swap if necessary.
66276-99-153
a. 6627 6-15-99 3 (-15>-19)
b. 662763-99-153>-15)
Step 5: Compare V" element with all elements and swap if necessary.
662763 -99 15

a. 662763 -15-99 (-15>-99)
Thus, in 5 iterations, elements are sorted using selection sort in descending order.
66273 -15-99

1. Sort the following elements using merge sort. Show each
step in detail: 5, 8, 89, 30, 42, 92, 64, 4, 21, 56.

£

. Apr2010-4M

Solution

#include<stdio.h>

#include<conio.h>

void main ()

{

int num[10] ={5,8,89,42,92,64,4,21,561};
int ans[101;

ans [0] = numlO0];
int i,j.k,1l,temp;
clrscr () ;
j=0,k=0;

printf (“\n Original Numbers ~);
for(i=0;1i<10;1i++)

{
printf (#%d”,numfi]) ;
} L
for(i=1;i<=10;i++)
{
printf(”“\n Comparing Num ~“%d”, i+1);
if (num[i] <= ans[i])
{
ans[i] = num/[il;
j ++
}
for(l=1;1<=1i;1++)
{
printf (”%d\t,ans[1]);
}
if(j==10|]k==10)
break;
}
printf (“\n Number After using Merge Sort
Method”) ;
for(i=1;i<=10;1i++)
{
printf (#“%d”, ansl[i]);
}
getch () ;
}
: Sots. 4M4' o 8. Sort the following elements by using quick sort: 48, 29, 8,
Apr2010 M. 59,72, 88
Solution

#include<stdio.h>

#include<conio.h>

int partition(intal],int low, int high)
{

int i,j,temp,key;

key = allow];

i = low+1l;

j = high;

while (1)

Data Structure UsingG = Searching and Sorting Techniques

{ while(i<high && key >= alil)

1++;
while(key < aljl)
-
1f(i<3)
{
temp = alil;
ali]l = aljl;
alil = temp;
}
else
{
temp = al[low];
allow] = afljl;
alj] = temp;
1
}
} .
void quicksort(int alfl, int low, int high)
{
int j;
if(low < high)
{
j-= partition{a, low, high);
qgquicksort(a,low,j-1);
guicksort(a,j+1,high);
}
}
void main ()
{

int i, n, al[e6]l= {48, 29, 8, 59, 72, 88};
printf(“\n Enter the value of N”);
scanf (”"%d”, &n);
gquicksort(a,0,n-1) ;
printf (“\n The Sorted Array is\n”);
for(i=0;i<dn;i++)

printf (“\n%d~”, alil);

9. Sort the following elements by using selection sort method:
10, 22, 65, 223, 87, 343, 98, 244

Solution

#include<stdio.h>
#include<conio.h>
void selection_sort(omt al],int n)
{ int 1, Jj, pos, small temp;

for (i=0;i<n;i++)

£

[Apr.2010 - 4M

small = al[il;

pos = i;
for(j=i+1;j<n;j++)
{

if(ali] <small)

Data Structure UsingiC: 7 -

bl

temp = alpos];
alpos] = alil;
alil = temp;

ol
void main ()
{
int i, n, al8]= {10, 22, 65, 223, 87, 343, 98, 244} ;
clrscr () ;
printf (“\n Enter the Number of Elements to Sort\n”);
scanf (“%d”, &n) ;
selection_sort(a,n);
printf (“\n The Sort Elements are \n”);
for(i=0;i<n;i++)
printf (#%d”,alil) ;

getch(); .
}
T e 10. Sort following data by using insertion sort techmiques:
Oct.2014 — 4M] 56,98,23,67,3,87,45,77,99
Solutioﬁ N
Index- 0 1 2 3 4 5 6 7 8
|56] |98 23 67 3 87 45 77 99 |
T ,
A list of sorted elements A list of unsorted elements

1% iteration: (place element a [1] at its correct place)

0 1 2 3 4 5 6 7 8
|56 98] [23 67 3 87 45 77 99 |
sorted unsorted
2" iteration: (place a[2] at its correct place)
0 1 2 3 45 6 7 8
|23 56 98] |67 3 87 45 77 99 |
sorted unsorted

3" iteration: (place a[3] at its correct place)

0 1 2 3 4 5 6 7 8
|23 56 67 98] |3 87 45 77 99 |
sorted unsorted

4™ iteration: (place a[4] at its correct place)

0 1 2 3 4 5 6 7 8
|3 23 56 67 98] | 87 45 77 99|
sorted unsorted

‘Searching and Sorting Techniques

5" iteration: (place a [5] at its correct place)
01 2 3 4 5 6 7 8
|3 23 56 67 87 98] [45 77 99|

sorted unsorted

6" iteration: (place a[6] at its correct place)
01 2 3 4 5 6 7 8
|3 23 45 56 67 87 98] |77 99 |

sorted unsorted
7" iteration: (place a[7] at its correct place)
01 2 3 4 5 6 7 8
|3 23 45 56 67 77 87 98] | 99 |
sorted unsorted

8" iteration: (place a [8] at its correct place)
01 2 3 4 5 6 7 8
|3 23 45 56 67 77 87 98 99|
sorted

11. Compare the efficiency of Bubble sort with Selection Sort?

L 0ct.’2014 M

Solution

Efficiency of bubble sort with selection sort

i. Simplicity: Both algorithms are equally simple to write.

ii. Time complexity: Both are not data sensitive. Both of them having a timing requirement of
o).

iii. Sort stability: Both sorting algorithms are stable.

iv. Storage requlrement No add1t10na1 storage 1s requlred

@E

s PU lluestmns
_ [Oct2015— 210

1. What is difference between sorting and searching?

2. How to calculate count of Best, Worst and Average case? [Apr.2015 - 2M]

3. Compare the efficiency of Bubble Sort with Insertion [Apr.2015 — 2M]
Sort?

4, gon})pare the efficiency of Bubble sort with Selection [Oct.2014 — 2M)]

ort”

5. “When Linear Search Method will be more efficient”. [Oct.2012 — 2M]

Comment.

6. Explain Linear Search method. : [Apr.2012 - 2M]

[Apr.2012 - 2M]

[Apr.12,10 — 2M]
- [Apr.2011 - 2M]

[Oct.2015 — 4M]

[Oct.2015 — 4M]
[Apr.2015 — 4M]

[Apr.2015 — 4M]
[Oct.2014 — 4M]
[Oct.2014 - 4M]

[Oct.2012 — 4M]

[Oct. 12,09 — 4M]
[Apr.2012 — 4M]

[Apr.2012 — 4M]
[Apr.12,0ct.11 - 4M]

[Oct.2011 — 4M]

[Oct.2011 — 4M]

[Oct.2011 ~ 4M]

[Apr.2011 — 4M]
[Apr.11,0ct.10 — 4M]

10.
11.
12.

13.

14.
15.

Marks

What is a binary search tree?
What is Sorting? State various techniques of Sorting.
Define Sorting.

Sort the following data by using selection sort techniques:
87, 45, 12,90, 67, 54, 34, 23, 88, 65.

Explain linear search method with an example.

Sort following data by using Insertion sort techniques:
12,5,122.9,7,54,4,23,88,60.

t:xplain Quick sort technique with an example.
Explain Heap sort technique with an example.

Sort following data by using insertion sort techniques:
56,98,23,67,3,87,45,77,99

Sort the following data using Merge Sort.
Show each step in detail: 25, 35, 18, 9, 46, 70, 48
Explain Quick sort with an example.

Sort the following data using Bubble Sort show each step in
detail: 108, 97, 71, 23, 12, 57, 93, 100

Explain Selection Sort technique with an example.
Explain Insertion Sort with an example.

Sort the following numbers in an ascending order using Heap -
Sort Method: 23, 15, 29, 11, 01, 07

Write a program to accept N numbers from the user and sort
using merge sort.

Write an algorithm for Quick sort (use recursion).
Sort the following elements using heap sort: 24, 6, 75, 12, 60, 15

Sort the following data, using insertion sort (show each step) in
descending order: -5, 8, 12, 64, 5, 88

%
vIsion

Chapter 5
LINKED LIST

1. Introduction

We use the concept of ‘list’ very frequently in our day-to-day lives. We make a list of tasks to be
done in the day, a lady makes a list of shopping items, and students make a list of the topics to be
studied and so on. However, once the list is made, it hardly remains the same. As the day progresses,
there are new tasks to be added, completed tasks to be removed, tasks to be reordered and some tasks
to be cancelled. Thus, there are constant modifications to the list i.e. the list is ‘dynamic’ in nature.

The term ‘list’ refers to a linear collection of data items such that there is a first element, second and
. . . a last element. Data processing frequently involves storing and processing data organized into
lists.

—

Data Stucture UsingC .~~~ @ . . LinkedlList

The following shows a list of some beautiful colors.

Violet
Blue
Green
Orange
Red

If we wanted to store this list in memory, we could use the sequential representation i.e. store the
colors in an array. Arrays use sequential mapping i.e. the data elements are stored in memory, fixed
distances apart. This makes it easy to compute the location of any element in the array. -

If the elements of the list are going to be fixed, then using an array will be a good method of storing

the elements of the list. But if we wished to insert the colors ‘Indigo” and “‘Yellow’ to complete the
colors of the rainbow, it will mean that we would have to move some colors to make place for the
missing colors. The same would apply if we had to remove certain colors from the list. Moreover,
the use of arrays will impose an upper limit on the maximum number of colors in the list.

Thus, in general, the use of sequential representation for a list, which is dynamic in nature, proves to
be inadequate due to the following reasons.

. 1
Limitations of Sequential Representation (Array) Apr.2015 — 4M
. . ;) What are the drawbacks
I. An array is a static data structure i.e. the size of the array of sequential storage?

remains fixed.

Thus, even if the data structure actually uses less amount of storage to store elements or
possibly uses no storage at all, the unutilized memory cannot be used for other purposes.

Moreover, if we require more space than allotted, it cannot be increased during run time.

2. Most real-time applications process variable size data. The amount of data to be manipulated
and hence the storage requirements cannot be predicted in advance during design time.

3. Often, we need to insert, delete, move and reorder data. For this, a lot of elements will have to
be moved, which will require a lot of processing time. If these operations are to be carried out
very frequently, the processing time will be enormous.

Hence, to improve the efficiency, we have to find another method of representing the elements of the
list so that the operations can be performed in a reasonable amount of time.

Data Strcture Using G~ i 7 Linked List

2. Concept of Linked Organization

pne solution to the above problem is that instead of using sequential representation, a ‘linked
epresentation’ or ‘linked organization’ should be used, i.e. unlike an array, where elements are
tored sequentially in memory, items in a list may be located anywhere in memory. To access

lements in the correct order, we store the address or location of the next element, with each element
f the list.

Definition: Linked Organization

Linked Organization is one in which the elements of the list are logically next to each other, but
hysically, they may not be adjacent.

Definition: Linked List

linked list is an ordered collection of data elements where the order is given by means of links i.e.
ach item is connected or ‘linked’ to another item.

asically a linked list consists of ‘nodes’. Each node contains an item field and a link. The item

ield may contain a data item or a link. {:}
< 2
: ‘o Oct.2015 - 2M)
dvantages of Linked List / o
9 What are the advantages
he advantages of a Linked List over an Array are as: of array over linked list?
: . . Apr.2012 - 2M ,
Linked List is an example of Dynamic Data Structure. They What are the advantages
can grow and shrink during execution of the program. of a Linked List over an

Array?
i. Representation of linear data structure (polynomial, stack, and \
queue) can be easily represented using Linked List.

ii. Linked list represents efficient memory utilization. Memory is not pre-allocated like array in
linked list. Memory is deallocated when it is no longer needed.

v. Operations on linked list as Insertion and deletion are easier and efficient. It can be carried out
in constant time.

Linked lists do not need contigilous blocks of memory; extremely large data gets stored in an
array might not be able to fit in memory.

Linked list storage does not need to be preallocated (again, due to arrays needing contiguous
memory blocks).

@

3. Implementation of Linked List

In the previous section we have defined a linked list to be a linked collection of nodes, each
containing some information. In this section, we will think about how to implement the linked list.
The main issues to be considered are:

a. How to store the elements of the linked list in memory?
b. How to indicate their logical order?
c. How to perform various operations on the list like insertion, deletion etc?

The way in which we will perform operations on the list will depend upon the method used to store
the nodes of the linked list.

We can use two methods to implement the linked list:
1. Static Representation.

2. Dynamic Representation.

3.1 Static Representation

An array is used to store the elements of the list. The elements may not be stored in a sequential
order. The elements can be stored at any position in the array. The logical order can be stored in
another array called ‘Link’. The values in this array tell the logical order of the elements in the array
DATA. The corresponding ‘link’ of a data item tells where the next element is.

For example, let us consider our list of colors. The first color in the list is ‘Violet’ followed by
‘Blue’. These colors can be stored anywhere in the array but the position in the Link field will tell
where the next color in the sequence can be found. All we need to know is the starting position of the
list. In this case, it is 3. ' ‘

2 DataStmctureUsingc,* ., -

DATA LINK
0 | Blue 4
Start 1 | Red R
3
2
‘l—b 3 | Violet 0
>4 Green 6
5
6 [Orange) 1
Start = 3 DATA [3] = Violet
LINK[3]= 0 DATA [0] = Blue
'LINK[0] = 4 DATA [4] = Green
LINK[4] = 6 DATA [6] = Orange
LINK[6] = 1 DATA [1] = Red
LINK[1] = —1 = List ended’
Advantages
1. The implementation is simple.
2. For performing operations like insert, delete etc, all we have to do is update the links.
Disadvantage
1. Since we are using an array to implement the linked list, there will be the limitation of a static

data structure; namely fixed memory size.

A linked list is a dynamic data structure i.e. the size of the list grows and shrinks depending upon the
operations performed on it. This means that when we insert elements in_ the list, its size should
increase and when elements are deleted, its size should decrease. This cannot be possible using an
array which uses static memory allocation i.e. memory is allocated during compile time. Hence, we

have to use ‘dynamic memory allocation’ where memory can be allocated and de-allocated during
run time.

@
"

3.2 Dynamic Representation

The Static representation uses arrays, which is a static data structure and has its own limitations.

Another way of storing a list in memory is by dynamically allocating memory for each node one by
one and linking them. Since we will dynamically allocate memory using functions like malloc and
calloc, we will have to use pointers. Moreover, each node will be at random memory locations, so
we have to store the address of the next node along-with the data in the node. All we have to do is
remember the address of the first node in an external pointer.

The node structure will thus contain two fields:
a. data or info : which stores the information
b. link or next : which stores the address of the next node.

info next

S

node

Each node contains two parts, data and link. The data part may contain a single data item or a
composite one like an entire record or it may be a link. The link or next part contains the address of
the next node in the list. The last node contains a special value called “NULL’ which indicates end
of the list.

The linked list for our colors can now be pictorially shown as below:

Start data link

o Violet ———Pl Blue

Advantages
1. Since memory is dynamically allocated during run-time, memory is efficiently utilized.

Green »|Orange » Red ><

A

2 There is no limitation on the number of nodes in the list; except for the available memory.
3. Insertion, deletion and traversal can be easily done.
4 Memory can be freed when nodes have to be deleted.

Internal and External Pointers

In the example above, each node has a pointer called ‘link’ to the next node. This pointer is stored
within the node. Hence it is called an internal pointer.

The pointer called “start’ stores the address of the first node of the list. This pointer is not contained
within a node. Hence it is called an external pointer.

4. Types of Linked Lists

|

Oct2015-2M
;Whatxsimked ﬁst
vstructure .

1. Number of internal pointers in the node — singly or doubly Lmﬁ%;'éﬁ’ List?

linked list State ts types.

Apr2011—aM

Expiam typesctf La |
‘;Lists .

We can classify linked lists on the basis of:

2. Kind of collection — linear or circular linked list.

1. Singly Linked List: Each node in this list contains only one
pointer which points to the next node of the list.

inffo next

S E—

2, Doubly Linked List: Each node in this list contains two pointers; one pointing to the previous
node and the other pointing to the next node. This list is used when traversing in both
directions is required

prev info next

- ——

node

The Singly linked list and Doubly linked list can further be of two types depending on the kind of
collection the list stores. The lists can be either organized in a linear manner or circular manner.

i Linear Linked List: In this list, the elements are organized in a linear fashion and the list
terminates at some point i.e. the last node contains a NULL pointer.

. info next info_next info_next info_next
_fist] > > > NULL
node node node node
Linear Singly Linked List
NULL > P — NULL

Linear Doubly Linked List

ii. Circular List : In this list, the last node does not contain a NULL pointer at the end to signify
the end of the list, but the last node points back to the first node i.e. it contains the address of
the first node. \

v

v

node node node node

Circular Singly Linked List

e

A

y 3

F

|
-

Circular Doubly Linked List

Sometimes, an extra node is placed at the beginning of the list. Such a node is called “‘Header Node’.
This node does not store any data element but can be used to store some control information like
number of elements etc. ’

A4

10 | » 20

A4

30 | >

header

5. Operations on a Singly Linked List

The various operations that can be performed on a singly linked list are given below.

1. Traversing the list: Visiting each node of the list is called tra\}ersal.

2 Computation of Length: Count the total number of nodes in the list.

3 Insertion: A node can be inserted at the beginning, end or in between two nodes of the list.
4. Deletion: Deletion from a list may be done either position-wise or element-wise.
5

Searching: This process searches for a specific element in the list.

Pata Structure Using G- -~ - @ S Linked List
6. Reversing or Inversion: This process reverses the order of nodes in the list.

7. Concatenation: This process appends the nodes of the second list at the end of the first list i.c.
| it joins two lists.

We shall see how to perform these operations on a Singly linked list in the following sections. But
first we have to study how to create the list. Only after that we will be able to perform the above
operations.

5.1 Creation of a Singly Linked List

Each node of a linked list contains info / data part and a link/next part which is a pointer. The
pointer stores the address of the next node.

data next

[S

We can implement a node using a self referential structure (structure which contains a pointer to
itself).

This structure will have two fields which can be written as

struct node

{
int data;
struct node * next;

};
We can also use the keyword typedef to create a user defined type called NODE. This can be
done as follows.

typedef struct node

{

int data;

struct node * next;
} NODE;

This declaration just creates the structure template. No memory is allocated at this point. Memory
ill be allocated when variables are created.

o create nodes during run-time, we will have to use functions like malloc and calloc and nodes can
de-allocated using function free.

ese operations require pointers. Hence we will have to use a pointer to NODE.

Data Siucure USIGC

Example to create a single node:

NODE * newnode;

newnode = (NODE *)malloc (sizeof (NODE)) ;
newnode — data = 10;

newnode — next = NULL;

newnode —» 10 | NULL

data next
In order to make the code more readable, we can use the following statement.
define NODEALLOC (NODE *)malloc (sizeof (NODE))
To create a linked list, we will create the nodes one by one and add them at the end of the list.

The list will be pointed to by an external pointer, which stores the address of the first node of the list.
In the example below, we are creating three nodes with values 10, 20 and 30 and making the linked
list. ‘

The list is pointed to by a pointer called “slist’, which is initially NULL.

1. slist = NULL
. .--" 4 10 {NULL
2. slist-" .
temp’/
/v 10 F--» 20 |NULL
3 slist , newnode
temp

A 10| | > 20 | --}——:{ 30 [NuLL|

4. siist . newnode
temp

The algorithm to create a linked list containing ‘n’ nodes can be written as follows:

Algorithm

1. Start

2 Initialize the pointer to NULL i.e. slist = NULL

3. Accept number of nodes to be created in n.

4 Counter = 1

5 Create a new node using malloc and store its address in newnode

Data Structure Using

6. If slistis NULL then (i.e. the list is empty)
store the address of the new node in slist i.e. slist = temp= newnode
else
attach newnode to temp i.e. temp->next=newnode

Move temp to the last node

7. Increment counter

8. If counter <=n
goto 5

9. Stop

This function creates a list and returns a pointer to the first node of the list

Function: Create a List
#define NODEALLOC (NODE *)malloc (sizeof (NODE))
NODE * createlist(NODE * slist)
{
int n, count;
NODE * temp, newnode;
slist = NULL; /* initialize pointer to NULL */
printf (“How many nodes;”) ;
scanf (“%d”, &n);
for (count = 1; count <= n; count++)
{
newnode = NODEALLOC;
newnode — next = NULL;
printf (“\n Enter the node data:”);
scanf (“%d”, &newnode — data);
if (slist==NULL)
slist = temp = newnode;
else
{
‘temp — next = newnode;
temp = newnode;

}
return slist;

}

Data Shvicuire sing©

5.2 Traversing a List

1
T : In order to display the elements of a list we will have to move from ‘
vovitf?jﬂ*’*w L the first node to the last using the links till we reach NULL. This is
TraSers?nYQO; Sﬁfgd gist.’ called displaying the list. The address of the starting node has to be
' known.
Algorithm
1. Start

2. slist is the pointer to the first node of the list.
3. if slist == NULL

Display “List is Empty”
Go to step 8.

4. temp is a temporary pointer for traversal.
5. Make temp point to the first node i.e. temp=slist.
6. If temp # NULL

Display the data of temp i.e. display temp->data
Move temp to the next node i.e. temp=temp->next.

-7 Repeat from 6 as long as temp # NULL.
8. Stop
Function: Display a List

void disp list(NODE * slist)
{

NODE * temp = slist; /* Store address of first node in temp */
if (temp == NULL)
{ .
printf (“List is empty”);
return;
}
while(temp != NULL)
{
printf (“%d\n “, temp — data);

temp = temp — next; /*move temp to the next node */

}
}

Data Structure Using G~~~ ' | LinkedlList

This function can also be written as a recursive function:

Recursive Function
void rec_display (NODE * slist)

{
NODE * temp = slist;
if (temp != NULL)

{
printf (“%d”,temp — data);

rec_display (temp — next);
}

5.3 [Inserting an Element in the List

In many situations we may have to insert an element in the list. For this, we must know the position
where it has to be inserted.

There are three possibilities that we can consider: Oct.2009 — 4M

. ' —_— . lain wi itable -

i Insert at the beginning: To insert a new node at the 5::&;;:?5?‘: gﬁag
beginning of the list, the pointer pointing to the first node will inserted into a linked list

have to be changed such that it now points to the new node. at beginning and at end.

The steps performed are illustrated in the diagram below. The function returns the new address
of the first node.

NULL

v
A4

newnode—# next = list;

list = newnode

newnode

Function: Insert at Beginning

NODE * insertbeg (NODE * list, int num)
{

iii.

ii.

NODE * newnode;
newnode = NODEALLOC;
newnode — data = num;
newnode — next = list;
list = newnode;

return list;

}

Insert at the end: To insert a new node at the end of the list, we will have to move a

temporary pointer to the last node and then attach the new node after the last node.

temp
st > > NULL -3
! newnode
1
newnode — next = NULL; Bt NULL
temp —» next = newnode
Function: Insert at End

NODE * insertend (NODE * list, int num)
{

NODE * newnode, * temp;

newnode = NODEALLOC;

newnode — data = num;

newnode — next = NULL;
/* MOVE temp to the last node */
for (temp = list; temp — next! = NULL; temp = temp —» next);
/* Link newnode to temp */
temp — next = newnode;
return list;

}

Insert in a intermediate position: To insert a node in between, we have to know the position
of insertion and move temp to the node before this position. The new node has to be linked

between temp and the node after temp.

temp

—_ > Vamns > NULL
list

et~

v

newnode new node—» next = temp —» next;

temp —» next = newnode

Function: Insert at intermediate position

NODE * insertbetn (NODE* list, int pos, int num)
| {
|
‘ NODE * newnode, *temp;
int i;
newnode = NODEALLOC;
newnode — next = NULL;

newnode — data = num;
/* Move temp to node at pos -1 */

for (i=1; i < pos-1 && temp—> next ! = NULL; i++)
temp = temp — next;
newnode — next = temp — next;

temp — next = newnode;
return list;

}
All the above three functions can be combined into a single function as below:

Function: Insertion

NODE * insert(NODE * list, int pos, int item)
{

NODE * newnode, * temp;

int 1;

newnode = NODEALLOC ;

newnode — data = item ;

if (pos = =1) /* insert at beginning */
{

newnode — next = list;
list = newnode ;
return list;

}

/*Move temp to node at one position less */

for(i = 1,temp = list; (i<pos -1)&&(temp—dnext != NULL) ;i++)
.temp = temp — next;

newnode — next = temp — next;

temp — next = newnode ;
return list;

Data Structure UsingC = 1@'@ - |linkedlist
5.4 Deleting an element from the list

For deleting an element, we have to locate the node at the specified position and free the node after “
linking the nodes before and after the node to be deleted.

As in the case for insertion, deletion of an element can be done at three positions:

i Deleting the first element: After deleting the first node from the list, the next node will
become the first node and hence, we will have to change the pointer to the list.

temp
e vaa ;-i > > NULL
list -
temp = list;
list = temp—» next
free{temp);

ii. Deleting the last element: To delete the last node, we have to move a temporary pointer to
the second last node and then free the last node. The second last node should now contain a
NULL link.

temp temp

Y
N

list ~——» >

7> NULL

temp1 = temp — next; ~-~-= NULL
temp = next = NULL;
free{temp1);
iii. Deleting an intermediate element: To delete a node in between, we have to move a
temporary pointer to the node at position-1 so that the node at the specific position can be
deleted by making appropriate links.

temp temp1

—list) NULL

v
h 4

\4

temp1 = temp —» next; e B P !

temp —» next = temp1 — next

free(temp1),

Function: Delete at a specific position

NODE * delete (NODE * list, int pos) Apragtz <M
{ Write the function fo .
NODE * temp, * templ ; fnsen,and‘de‘lete,aMode
. . in the beginning of a
if (pos = = 1)/* Delete the first node */ Singly Linked List.
{ Link .
temp = list ;
list = list — next ;
free(temp) ;
return list;
}
/* Move temp to the node at position - 1 */
for (i=1 , temp = list ; (i < pos-1)&&{(temp != NULL) ;i++)

temp = temp — next;

templ = temp — next ;
/* templ is the node to be deleted */

temp — next = templ—> next;

/* link temp to node after templ */
free (templ);
return list;

The above function deletes the element at a given position. We can also delete a specific number
from the list. This can be done by ‘searching’ the number in the list and then deleting that node
which contains the number.

5.5 Searching an Element in the List

To search an element in the list, we will have to traverse the entire list and compare the data in each
node. If found, we will return the node address and NULL otherwise.

Algorithm

. Start _

2 list is the pointer to the first node of the list.

3. temp is a temporary pointer for traversal.

4 Accept num i.e. the number to be searched in the list.

Data Structure Using C

5. Make temp point to the first node i.e. temp=slist.
6. pos =1
7. If temp->data == num then
Display “Element found in the list at position pos”
Go to step 11
8. Move temp td the next node i.e. temp=temp->next.
9. pos =pos + 1
10. If temp # NULL
Go to step 7
11. Return temp.
12. Stop

Function: Search a specific number in the list

NODE * gsearch(NODE * list, int num)
{
NODE * temp;

for (temp = list; temp! = NULL; temp = temp —> next)
if (temp — data = = num)
return temp;
return temp;

}

We shall now write a menu-driven program to implement the above operations on the linked list.

<= Program : Menu driven Operations on Singly Linked List
#include <stdio.h>
JEREHFE KK Rk kkkkxxxxx GLOBAL DECLARATIONS
oct'2012_4M *****************/
- Write a 'C’ Program to . typedef struct node
search given element {
into the Singly Linked int data;
List. , struct node *next;
}NODE ;

#define NODEALLOC (NODE *)malloc (sizeof (NODE))

Data Structure UsingC =, ——e

/");************************ CREATE *********************/

, NODE * createlist(NODE * list)

{

NODE * newnode,* temp;

int i,n;

printf ("\nHow many elements :");
scanf ("&d", &n) ;

for (i=1;i<=n;i++)

newnode=NODEALLOC;

newnode - >next=NULL;

printf ("\nEnter the element");

scanf ("%d", &newnode- >data) ;

if (1ist==NULL)
list=temp=newnode;

else

{
temp - >next=newnode;
temp=newnode;

}

return list;

}

/********************** INSERT **********************/

NODE* insert (NODE * list, int n, int pos)

{

NODE * newnode, *temp;
int i;
newnode=NODEALLOC;
newnode->next=NULL;
newnode->data=n;
if (1list==NULL)
{ list=newnode;
return list;
}
if (pos==1) /*** insert at position 1 **/
{
newnode->next=1list;
list=newnode;
return list;

}

/** move temp to the node at pos - 1 */
for{(i=1,temp=list;i<=pos-2 && temp->next!=NULL; 1++)
temp=temp->next;

newnode->next=temp- >next;

temp- >next=newnode;

return list;

}
/********************** DISPLAY**********************/
void display (NODE * list)
{

NODE * temp;

for (temp=1list;temp!=NULL; temp=temp->next)

printf ("%d\t", temp->data);

} .
/***************** DELETE BY POSITION *****************/

NODE * deletepos (NODE * list, int pos)
{
NODE * temp,* templ;
int i;
if (pos==1) /* Delete the first node */
{
temp=1list;
list=1ist->next;
free (temp) ;
return list;
}
for (i=1, temp=1list;i<=pos-2 && temp!=NULL; i++)
temp=temp->next;
if (temp==NULL)
{ .
printf ("\nPosition out of range");
return list;
}
templ=temp->next;
temp->next=templ->next;
free(templ) ;
return list;
}

/******************** DELETE BY VALUE *****************/
NODE * deleteval (NODE * list, int num)

{
NODE * temp=list,* templ;
if (temp->data==num) /* first node */
{
temp=list;
list=list->next;
free(temp) ;
return list;
}

for (temp=1list;temp->next!=NULL; temp=temp->next)
{

if (temp->next->data == num)

Data Structure Using C . @ e e
{

templ=temp- >next;
temp->next=templ - >next;
free (templ) ;
return list;
}
}
printf ("\nElement not found");
getch{();
return list;

}

/********************** SEARCH **********************/
int search(NODE * list,int num)
{
NODE* temp;
int i;
for (i=1, temp=list; temp!=NULL; temp=temp->next, i++)
if (temp->data==num)
return ij;
return -1;
}
/******************* MAIN FUNCTION *******************/
void main()
{
NODE * list=NULL;
int choice, n, pos;
do
{
printf ("\nl: CREATE");
printf ("\n2: INSERT");
printf ("\n3: DELETE BY NUMBER") ;
printf ("\n4: DELETE BY POSITION") ;
printf ("\n5: SEARCH");
printf ("\n6: DISPLAY");
printf ("\n7: EXIT");
printf ("\nEnter your choice :");
scanf ("%d", &choice) ;
switch (choice)
{
case 1
list=createlist(list);
break;

case 2:
printf ("\nEnter the element and position :");
scanf ("%d%d", &n, &pos);
list = insert(list, n, pos);
display (list);
break;

case 3:

printf ("\nEnter the element :");
scanf ("%d", &n) ; '
list = deleteval(list, n);
display (list);
break;
case 4:
printf ("\nEnter the position :");
scanf ("%d", &pos);
list = deletepos(list, pos);
display(list);
break;
case 5:
printf ("\nEnter the element to be searched :");
scanf ("%d", &n) ;
pos = search(list, n);
if (pos==-1)
printf ("\nElement not found");
else
printf ("\nElement found at position %d", pos) ;
break;
case 6:
display(list) ;
break;
}/* end switch */
getch() ;
} while(choice !=7);
getch() ;

i

5.6 Computation of Length of a Singly Linked List

The length of a linked list is the number of nodes in the list. We can count them by traversing the list
from the first node to the last node of the list. The display method seen above can be slightly
modified so that we can count the nodes.

Algorithm

1. Start

2. slist is the pointer to the first node of the list.
3. ifslist==NULL

Display “Empty List”

| Goto 10

|

4. temp is a temporary pointer for traversal.
5. Initialize count to 0.

Make temp point to the first node i.e. temp=slist.
7. If temp # NULL

Increment count.

Move temp to the next node i.e. temp=temp->next.
8. Repeat step 7 as long as temp # NULL.

Return count.
10. Stop.

Function: Length of a List
int length (NODE * slist)
{

NODE * temp = slist ; /* Store address of first node in temp */
int count = 0;
while (temp != NULL)
{
count++;
temp = temp — next; /*move temp to the next node */

}

return count;

}
This function can also be written as a recursive function:

Recursive Function 1: Length of List

int rec_length(NODE * slist)
{
NODE * temp = slist;

static int count;

if (temp != NULL)

{

count++;
rec_length(temp — next);

}

return count;

}

© i Linked List

Another way of writing the recursive function is given below.

Recursive Function 2: Length of List !

int rec_length(NODE * slist) ‘
{ ,
NODE * temp = slist;
if (temp == NULL)
returxn 0;
return 1 + rec_length(temp->next);

}

6. Doubly Linked List

In a singly linked list, each node contains one pointer, which points

0ct.2009 - 4M
' : to the next node. Thus, traversal is possible only in one direction.

Explain Doubly Linked _ . _ R :
Listin detail. Howit A doubly linked list is a linked list in which each node contains two

differs from Singly Linked links — one pointing to the previous node and one pointing to the

List.
o next node. |
prev info next
4__...__. .._..._’
ot node
Oct.15,Apr.15 ~ 4M .
What is dgumy linked The node structure will be
- list? Explain its node
structure. %ypedef struct node
int data;
struct node *prev, *next;
} NODE;
Example
> 0| H 5 20 | 2 > 30 | ><
Advantages
1. Traversal in both directions is possible.

2. Operations like insertion, deletion, searching can be efficiently done.

Disadvantage

Extra storage is needed for the pointers.

1.

Creating a doubly linked list: This is the same as creating a singly linked list except that
every node has to be linked using two pointers - prev and next.

Function

NODE * createlist(NODE *dlist)

{

NODEPTR temp, newnode,

int i,n

printf (”How many nodes:”);

scanf (“%d”, &n) ;

for (i=1; i<=n;i++)

{
newnode = NODEALLOC;
newnode — next = newnode — prev = NULL;
printf (“\n Enter the element:”);

scanf (“%$d”, &newnode — data) ;

if (dlist == NULL)
dlist = temp = newnode;
else

{
temp — next = newnode;

newnode—> prev = temp;
temp = newnodes;
}
}
return dlist;

}

Inserting node at the beginning

dlist < <
P 10 > 20 > 30
e . 1 > »
'\ ‘\\
S S
- N
- N
s i \
diist I
_____ >>< -1~
newnode

newnode —next = dlist;
dlist »>prev = newnode;
dlist = newnode

Rea Smenre RN O = inkedlist

3. Inserting a node at the end

dlist }. ><;_:) >< |

temp newnode

v

A 4

temp —> next = newnode;
newnode — prev = temp;

4. Inserting a node in between

temp

dlist . /) . .
—— i <
, <

F-- -
-1

newnode

newnode — next = temp — next;
temp — next — prev = newnode;
temp — next = newnode;
newnode — prev = temp;

5. Deleting the first node

temp

diist

h 4
v

Apr.11, Oct.10 - 4

- Write a function to delete
a node from Doubly
Linked List.

4

dlist -~

temp — prev — next = temp — next;
temp — next — prev = temp — prev;
free(temp);

For simplicity of operations, it is preferable to keep an extra node called ‘header’ node at the
beginning of the list. The following program illustrates the various operations on a doubly linked list,
which contains an additional node at the beginning of the list.

Data Structure Using G . ——

T

N

U Linked List

|

== Program : Menu driven program for Doubly Linked List
/*** list is an empty node at the beginning **/
I #include <stdio.h>
typedef struct node
{
int data;
struct node *next, *prev;
} NODE;
#define NODEALLOC (NODE *)malloc (sizeof (NODE))

=

/************* CREATE LIST *********************/
void create (NODE *1list)
{
int i,n;
NODE *newnode, *temp=1ist;
printf ("\nHow many nodes ")
scanf ("%d", &n) ;
for (i=1;i<=n;i++)
{
newnode=NODEALLOC ;
scanf ("%d", &newnode->data) ;
newnode- >next=NULL;
temp- >next=newnode;
newnode->prev=temp;
temp=newnode;

}
void insert(NODE *list, int n, int pos)
{
NODE *temp=list, *newnode, *temp1;
int 1;
newnode = NODEALLOC;
newnode->data=n;
newnode- >next=NULL;
for (i=1; (i<pos) && (temp->next!=NULL) ;i++)
temp=temp->next;
templ=temp->next;
newnode->next=templ;
templ->prev=newnode;
temp->next=newnode;
newnode->prev=temp;
}
oid display (NODE *1ist)

NODE *temp;
for(temp=list->next;temp!=NULL;temp=temp—>next)

Bata Strucuis Using ©

printf ("$d\t", temp->data);
}
void delete (NODE *list, int pos)
{
NODE *temp, *templ, *temp2;
int i;
/** Move temp to the node to be deleted Kk k¥ [
for (i=1, temp=1list; (i< pos) && (temp!=NULL); 1++)
temp=temp->next;
if (temp==NULL)
{
printf ("Position Out of range");
return;
}
templ=temp->next;
temp2=templ->next;
temp->next=temp?2;
temp?2->prev=temp;
free (templ) ;

}
void main()
{
NODE *1list;
int n,pos,choice;
list = NODEALLOC;
list->next = list->prev =NULL;
do
{
printf{("\nl: Create");
printf ("\n2: Insert");
printf ("\n3: Delete");
printf ("\n4: Display");
printf ("\n5: Exit");
printf ("\n\nEnter your choice :");
gcanf ("%d", &choice) ;
switch (choice)
{
case 1:
create(list);
break;
case 2:
printf ("\nEnter the element and position ");
gcanf ("%$d%d4", &n, &pos) ;
insert(list,n,pos);
display (list);
break;
case 3

printf ("\nEnter the position ");

Data Structire Usingg 0 e — i Linked List

scanf ("%4d", &pos) ;
delete(list,pos) ;
display(list) ;
break;

case 4:
display (list);
break;

}
} while(choice 1=5);
getch() ;
}

2]

I

=

=

7. Circular Linked List

Apr.11, Oct. 10 - 2M

Explain Singly Circular

A circular list is different from a linear list because the last node Linked List.

points to the first node.

- Using a circular list, we can traverse the list starting from any node to any other node. The insertion,
deletion and display operations can be performed in a similar manner as for a singly or doubly linked
list.

The only point to remember is that in a circular list, there is no NULL at the end of the list. The last
node points to the first node.

Hence the list termination condition will be different.

We shall see the functions to perform operations like create, traverse, insert and delete on a singly
circular linked list.

Creation

The steps in creation of a circular list are

1. clist = NULL
I 10 l clist = newnode

newnode —¥ next = clist

2. Add10

newnode
clist

J temp = clist
10 20 temp —» next = newnode

A4

3. Add20

clist newnode hewnode — next = clist

Oct.2015- 4M

Wirite a function o create
and display circular
linked list.

Oct.2012- 4M

Write the functionto
insert node at the
beginning of the Circular
Singly Linked List.
Apr.2010- 4M

Write a C program to
create node in circular

linked list. S

Traversal
void display (NODE * clist)

{

NODE * temp = clist;
if (clist == NULL)

{

NODE* create (NODE* clist)
{
NODE* newnode, * temp = clist;
char ans;
do
{
newnode = NODEALLOC;
printf (“\n Enter the value :”);
scanf (“%d”, &énewnode — data) ;
if (clist == NULL)
{
clist = temp = newnode;

newnode — next = clist;

}

else

{

temp — next = newnode; /*Link newnode */

newnode — next = clist ;
temp = newnode ;
}
printf (“\n Any more nodes ?");
ans = getchar () ;
} while(ans == ‘y');
return(clist);

}

printf (“List is empty”);

return; }
do
{

printf (”%d \t~,
temp=temp->next;
} while (temp != clist);

temp->data) ;

. LinkedList

Insertion

NODE * insert (NODE * clist , int n , int pos)
{

NODE * temp = clist, *newnode:
newnode = NODEALLOC;
newnode->data = n;

if (pos == 1)

{

/** Move temp to last node */
for (temp = clist; temp ->next 1= clist; temp= temp->next) ;
newnode->next = clist;
temp->next = newnode:
clist = newnode;
return clist;

}

for(i=1; i<pos-1 && temp->next I=clist ; t++)

temp = temp->next;

newnode- >next = temp->next;

temp- >next=newnode;

return clist;

Deletion
'NODE * delete (NODE * clist , int pos)

{

NODE * temp = clist, *templ;

if (pos == 1)
{
/** Move temp to last node */
for (temp = clist; temp ->next != clist; temp= temp->next);

templ=clist;
clist = clist -> next;
temp->next = clist;
free (templ);
return clist;
}
for (i=1; i<pos-1 && temp->next !=clist ; t++)
temp = temp->next;
if(i < pos -1)
{
printf (“Position out of range”) ;
return clist;

}

templ = temp->next;
temp->next = templ->next;
free(templ) ;

return clist;

Data Structure UsingC. - = s Linked List

Solved Examples

1 1. What is a Doubly Linked List? Write a ‘C’ program to
Apr.2012 - 4M] add new node at the end of a Doubly Linked List.

24, 6,75, 12, 60, 15

Solution
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
define NULL O
typedef struct list
{
int data;
struct list *next;
struct list *prev;
}node;
node *head = NULL;
node *prev = NULL;
node* create_node ()
{
node *newl;
newl = malloc (sizeof (node));
printf ("\nEnter data:");
scanf ("%d", &newl->data) ;
newl->next = NULL;
newl->prev = NULL; J
return (newl) ; :
}
void add ()
i |
int insdata;
node *newl,*temp;
printf ("\nEnter data after which to insert:");
scanf ("%d", &insdata) ;
temp = head;
while(temp !'= NULL)

{
if (temp->data == insdata)
{
newl = create_node();
newl->next = temp->next;
temp->next = newl;
return;
}
else
temp = temp->next;
}

333 — o uinked List

void display ()
{

node *temp;

temp = head;

while(temp != NULL)

{
printf("\n%d",temp->data);
temp = temp->next;

} .

}

void main ()

{
int c¢h,chi, x:
clrscr () ;
do
{

printf ("\nMENU") ;
printf("\nl.create a node\n2.Add a
node\n3.Display\nd.exit") ;
printf ("\nEnter choice") ;
scanf ("%d", &ch) ;
switch (ch)
{
case 1: head = create node();
break;
case 2: printf("\n Add a node");
add () ;
break;
‘case 3: display () ;
break;
case 4: exit (0);
}
printf ("\n\n") ;

twhile(ch != 4);
getch () ;
}
2, Write a ‘C’ program to reverse a Singly Circular Linked 1
List. [Apr.2012 — 4M
Solution

#include<stdio.h>
ﬁinclude<malloc.h>
struct node

{ int info;
struct node *link;

0 Linked List

DaStcwetninge = = @Ii»

int i,n,item;
start=NULL;
printf ("How many nodes you want : ");
scanf ("%d", &n) ;
for(i=0;i< n;i++)
{ .
printf ("Enter the item %d : ",i+1);
scanf ("&d", &item) ;
create list(item);

}
printf ("Initially the linked list is :\n");
display () ;
reverse () ;
printf ("Linked list after reversing is :\n");
display () ;
}/*End of main()*/
void create list(int num)
{

struct node *q, *tmp;

tmp= malloc (sizeof (struct node));

tmp->info=num;

tmp->1ink=NULL;"

if (stdrt==NULL)

start=tmp;
else
{ g=start;
while(g->1ink!=NULL)
g=gq->link;
g->link=tmp;
}

}/*End of create_list() * /
vold display ()

{

struct node *q;

if (start == NULL)

{
printf ("List is empty\n");
return;

}
g=start;

while (g!=NULL)

{
printf("%d ", g->info);
a=q->1link;

}
printf ("\n") ;
}1/*End of display () */
void reverse()

Data Structure Using G~~~ ‘) o Linked st

{
struct node *pl, *p2, *p3;
if(start->1ink==NULL) /*only one element*/
‘ return;
| pl=start;
p2=pl->link;
p3=p2->link;
pl->1ink=NULL;
p2->link=p1;
while (p3!=NULL)
{ pl=p2;
pP2=p3;
p3=p3->1link;
p2->link=pil;

}
start=p2;
}/*End of reverse() */

3. Write a program to add a node in a Doubly Linked List at
the beginning and at the end. Oct.2014 — 4M

Solution

#include<stdio.h>
#include<malloc.h>
struct node /* structure to represent a node of doubly linked list*/
{
struct node *prev;
int info;
struct node *next;
}*start;
void main() /* main function */
{
int choice, n ,m, i;
start=NULL; /*initialize header node to NULL */
while (1)
{
printf("1.Create List\n");
printf ("2.Add node at begining\n");
printf ("3.Add node at the end of list \n") ;
printf ("4.Display\n");
printf ("5.exit\n") ;
printf ("Enter your choice : ");
scanf ("%d", &choice);
switch (choice)
{
case 1: printf("How many nodes you want : "
scanf ("%d", &n);

for (i=0;1i<n; i++)
{
printf ("Enter the element: ");
scanf ("%d", &m);
create_list(m);
}
break;
case 2:printf ("Enter the element: "):
scanf ("%d", &m);
addatbeg (m) ;
break;
case 3:printf ("Enter the element: ")};
scanf ("$d", &m) ;
addatend (m) ;
break;
case 4:display ()
break;
case 5: exit();
default:printf ("Wrong choice\n");
} /*End of switch*/
1 /*End of while*/
} /*End of main()*/
create list(int num) /*cerate function to create a single
node */
{
struct node *q, *tmp;
tmp= malloc (sizeof (struct node));
tmp - >info=num;
tmp - >next=NULL;
if (start==NULL)
{
tmp->prev=NULL;
start->prev=tmp;
start=tmp;
}
else
{
g=start;
while (g->next!=NULL)
g=g->next;
g->next=tmp;
tmp->prev=qg;
}
} /*End of create list()*/
addatbeg (int num) /*function to add node at the beginning of
the list */

{

struct node *tmp;

Dmas“qﬂm§*BMQC?aifF;¥; 4!!@} -

tmp=malloc (sizeof (struct node)) ;
tmp->prev=NULL;
tmp->info=num;
tmp->next=start;
| start->prev=tmp;
) start=tmp;
‘}/*End of addatbeg () */
addatend (int num)
{
struct node *tmp, *q;
int 1i;
tmp=malloc (sizeof (struct node));
tmp->info=num;
tmp - >next=NULL;
tmp->prev=NULL;
g=start;
while(g->next != NULL)
g=g->next;
g->next=tmp;
tmp->prev=qg;
/*End of addatend() */
isplay () /*display function to print all nodes in the list */

struct node *q;

if (start==NULL)

{ printf("List is empty\n"):;
return;

}

g=start;

printf("List is :\n");

while (g!=NULL)

{ printf("sd ", g->info);
Jg=g->next;

}

printf ("\n") ;

}V*End of display () */

linked list.

Write a function to add node at given position in singly L 4 0(:&2014": W

olution
ode *insert(node *head, int x, int key)

ode *p, *q;
=(node*)malloc (sizeof (node)) ;

p—data=x;

if (key==-1)

{ p—next=head;
head=p;

}

else

{
g=head;

while (key!=g—data && g!= NULL)

g=g—rnext;
if (g!=NULL)

{ p—-next=g—next;

gonext=p;

}
}

return (head) ;

What is use of “typedef” keyword?

What are the advantages of array over linked list?
What is linked list structure?

What is Linked List? State its types.

Explain Singly Circular Linked List.

What do you mean by Traversing a Linked List?

S

Write a function to create and display circular linked list.
What are the drawbacks of sequential storage?
Write a recursive function for erasing linked list.

bl o

Write a function to display circular linked list in reverse
order.

[Oct.2015 — 2M]
[Oct.2015 — 2M]
[Apr.2015 — 2M]
[Apr.2012 — 2M]
[Apr.11, Oct.10 — 2M]

Oct.2009 — 2

[Oct.2015 — 4M]
[Oct.2015 — 4M]
[Oct.2015 — 4M]
[Oct.15,Apr.15 - 4M]

[Apr.2010 — 4M]

[Apr.2010 — 4M]
[Oct.2010 — 4M]
[Oct.2009 — 4M]

[Oct.2009 — 4M]

25.

26.
27.
28.

29.

e Linked List

Write a ‘C’ program to remove first node of singly linked list
and insert it at the end of a list. ‘
Write a ‘C’ program to create a node in doubly linked list.
Write a function to delete a node from Doubly Linked List.

Explain with suitable example how data is inserted into a
linked list at beginning and at end.

Explain Doubly Linked List in detail. How it differs from
Singly Linked List

0
VISION

10.

11.

12.

13.

14.
15.

16.

Write a function to merge given two singly linked lists.

Write a function to remove last node of singly linked list and
add it at the beginning.

What is doubly circular linked list? Explain its node structure.
Write a function to merge given two singly linked lists.

Write a function to display circular linked list in reverse order.

Write a function to remove given node from singly linked list
and add it at the end of list.

Write a fanction to add node at first position in singly linked
list.

Write a function to create and display circular doubly linked
list.

Write a function to add node at given position in singly linked
list.

Write a function to create and display doubly linked list.

Write a ‘C’ Program to search given element into the Singly
Linked List. :

Write the function to insert node at the beginning of the
Circular Singly Linked List.

Write a function to Insert Node at the specified position in
Doubly Linked List. -

What are the advantages of a Linked List over an Array?

Write the function to insert and delete a Mode in the beginning
of a Singly Linked List.

Write a C program to create and display Singly Circular
Linked List.

What is a Doubly Linked List? Write a ‘C’ program to add new
node at the end of a Doubly Linked List. 24, 6,75, 12, 60, 15

Explain types of Link Lists.
Write a function to delete a node from doubly linked list.

Write a C program to create node in circular linked list.

[Oct.2015 — 4M]
[Apr.2015 — 4M]
[Apr.2015 — 4M]
[Apr.2015 — 4M]
[Apr.2015 — 4M]
[Apr.2015 — 4M]

[Apr.2015 — 4M]

[Oct.2014 - 4M]
[Oct.2014 — 4M]

[Oct.2014 — 4M]
[Oct.2012 — 4M]

[Oct.2012 — 4M)

[Oct.2012 — 4M]

[Apr.2012 — 4M]
[Apr.2012 — 4M]
[Apr.2012 — 4M]}

[Apr.2012 — 4M]

[Apr.2011 — 4M]
[Apr.2011 — 4M]

[Apr.2010 — 4M]

[Apr.2010 — 4M]

[Apr.2010 — 4M]
[Oct.2010 — 4M]
[Oct.2009 — 4M]

[Oct.2009 — 4M]

25.

26.
27.
28.

29.

—a © - Linked List

Write a ‘C’ program to remove first node of singly linked list

and insert it at the end of a list.
Write a ‘C’ program to create a node in doubly linked list.
Write a function to delete a node from Doubly Linked List.

|

Explain with suitable example how data is inserted into a\

linked list at beginning and at end.

Explain Doubly Linked List in detail. How it differs from
Singly Linked List

(/s
VISION

Chapter 4
STACK AND

1. Introduction

Data structures play a very crucial role in computer science. One of the most important data structure
is the stack. In this chapter we will study this data structure, its implementation and see why it plays
such an important role in Computer Science.

2. Definition of a Stack

A stack is an ordered collection of items into which items may be inserted and deleted from one end
called the top of the stack. The stack operates in a LIFO (Last In First Out) manner i.e. the
element which is put in Last is the First to come out.

Example

A common example is a pile of plates kept one above the other. Only the topmost plate can be taken
and any new plate has to be put at the top.

This is an example of a stack. The following diagram illustrates a stack after items A, B, C and D
have been put into it.

Top —»

o OI0

A

When we want to remove an item from stack, D will be the first to be removed and the top points to
item C.

Top —» C

Stack after D is removed

A new element E will be added above C.

Top —

>(m(O|m

Adding E to the stack

Thus, the stack is dynamic in nature i.e. its size can increase or shrink during runtime.

3. Primitive Operations on Stack

There are primitive operations that can be performed on a stack

1. Create: Creates a new stack. This operation creates a new stack which is empty.

2. Push: Adds an element to the stack. The push operation
inserts a new element at the top of the stack. Top now points
to this new element.

Data Structire UsingG - . Stack and Quelie

3. Pop: Removing an element from the stack. The pop operation {z%
6&.2010 M

removes the topmost element from the stack thereby reducing

the size of the stack by 1. The element below it now becomes
the topmost element. What is a Stack? Discuss
Operations Performed on
4. Isempty: Checks whether a stack is empty. This operation Stack. -
returns TRUE if the stack is empty and False otherwise. This 0ct.2009 - 2M
is required for the pop operation because we cannot pop from Expfain different
an empty stack. operations performed on

gSta(:k. 4 j

4. Implementation of a stack

A stack can be implemented in two ways:

1. Static
2. Dynamic

4.1 Static Implementation of Stack

Since the stack is an ordered list of items, we can implement it using a familiar and similar data
structure i.e. arrays. The array elements have sequential representation which is required for a stack
also. However, there are fundamental differences between a stack and an array. Some differences
are as follows:

Array Stack

1. | Any element of an array can be accessed. Only the topmost element can be accessed.

An array essentially contains homogenous -
2. elements. A stack may contain diverse elements.

. . S A stack is a dynamic data structure i.e. its size

An array is a static data structure i.e. its size .

3. remains constant. shrinks and grows as elements are pushed and
popped.

There is an upper limit on the size of the array, . .

4. which is specified during declaration. Logically, a stack can grow to any size.

ence, if we are implementing a stack using an Array, there will be limitations imposed on the stack
ue to the restrictions on the array.

ne important limitation will be on the stack size. Since an array can be of a fixed size only, the
tack implemented using an array will also have an upper bound.

D Sein e G ‘Stack and Queu

We will now also have to check if the upper bound has been reached before an element is Pushec
into the stack. Thus, one more operation i.e. Isfull will have to be performed on the stack. Thi
operations gives TRUE if the upper limit has been reached i.e. the stack is full.

We shall also define a new operation called ‘Initstack’ which will initialize the top to —1 to indicate
an initially empty stack.

4.2 Declarations and Functions

Declaring a Stack
A stack to be implemented using an array will require
1. An array of a fixed size

2. Aninteger called top which stores the index or position of the topmost element.

We can use a structure for the above purpose.

#define MAX 100
#define EMPTY -1
#define FULL MAX-1
struct stack

{
int top;
int items [MAX];
bi
This declaration only specifies the template. The actual stack can be declared as

struct stack si1;
Using typedef

The typedef can be used to create a new data type called STACK. This can be done as

typedef struct
{

int top;

int items [MAX] ;
} STACK;

The declaration

STACK sl1,s82;

declares s1 and s2 as two stack variables.

Data Structure UsingG =~ . Stackand Queue

Stack with objects of different data types.

Although an array allows elements only of the same data type, a stack can be designed to store
elements of multiple data types. A union can be used for this purpose as shown.

#define INT 1
#define FLOAT 2
#define CHAR 3
struct element_ type
{ int eletype;
union
{
int intvalue;
float floatvalue;
char charvalue;
} element;
}i
struct stack
{ int top;
struct element_type items[MAX];
}i

Depending upon the value stored in eletype, either an integer, float or character value will be stored
in the union.

Oct.2014 - 4M

- What is stack? Explain
4.3 Operations on the Stack its operations in details.

1. Initialize a stack: When a stack variable is declared, the integer top has to be initialized to
indicate an empty stack.

Since we are using an array, the first element will occupy position 0. Hence, to indicate an
empty stack, top has to be initialized to —1. The function will be written as

void initstack (STACK *ps)
{f ps = top = -1;}
calling the function

initstack (&sl1) ;

2. Checking whether stack is empty: An empty stack can be tested from the value contained in
top. If top contains —1, it indicates an empty stack.

int isempty (STACK *ps)
{

return(ps — top == EMPTY);

}

calling the function
if (isempty (&s1)

Checking for a Full Stack: If the value of top reaches the maximum array index i.e. MAX-1,
no more elements can be pushed into the stack.
int isfull (STACK *ps)
{
return(ps — top == FULL);
}
calling the function
if (isfull(&sl))

The Push Operation: An element can be pushed into the stack only if it is not FULL. In such
a case, the top has to be incremented first and the element has to be put in this position.

void push(STACK *ps,int n)

{

if (isfull{ps))
{ printf(“\n stack overflow”);
return;

}

else
{ ++ps o top;
ps — items [ps — topl = n;
}

}

Calling the function

push(&sl,n) ;

The statements in the else part can also be written as

ps — items [++(ps > top)] =n;

The Pop Operation: An element can be removed from the stack if it is not empty. The
topmost element can be removed after which top has to be decremented.

int pop (STACK *ps)
{
return(ps — item [ps — top--1);

Deta SiructuUsing & - Stackand Queue

calling the function
if (isempty (&s1))
printf (“\n Stack Empty”);
else
printf (“%d”, pop(&sl));
We shall now write a simple menu driven program to implement a stack using the functions

and declarations as written above.

/* Illustrate implementation of stack using Array */
main ()
{

STACK s1;

int ch,n;

do

printf (“\nl: PUSH”") ;
printf (“\n2: POP") ;
printf (”\n3: EXIT”) ;
printf (“\n\n Enter your option :”);
scanf (“%d”, &ch) ;
switch (ch) {
case 1 : printf(“Enter the data to be pushed”);
scanf (“%d”, &n) ;
push (&sl,n) ;
break;
case 2
if (isempty (&s1)) -
printf (“\n Stack is empty*);
else
printf (“\n The popped value is %d”, pop (&sl));
break;
case 3 : printf(“\n Exiting”");
} /*end of switch */
} while(ch!=3);
}/* end of main */

Output

1: PUSH

2: POP

3: EXIT

Enter your option: 2
Stack is empty

1: PUSH

2: POP

Data Stucture Using G =

‘Stack anid Queve

3: EXIT
Enter your option: 1
Enter the data to be pushed: 20

1: PUSH

2: POP

3: EXIT

Enter your option: 2
The popped value is 20

1: PUSH .
2: POP)

3: EXIT

Enter your option: 3

Exiting. ..

Another example of stack usage can be seen in the reversing of a string. Each character of the string
is pushed into a stack and after all have been pushed, the characters are popped out one by one. This
will give us the characters in the reversed order.

The stack has to store characters and hence the array has to be declared of type char.

/* Reversing a string using a stack */

main ()

{ STACK s;
char str[20];
int i = 0; initstack(&s);
printf (*\n Enter the string :");
gets(str);
while(str[il! = \0");
{push(&s,strlil);
4+

}

1=0;

while (!isempty (&s))
{ str[i] = pop(&s);
i++;
}
str[il= '\0";
printf (*\n The reversed string is :");
puts (str);
}

Output

Enter the string: Computer
The reversed string is: retupmoC

. Slockand Queie

We have seen how a stack can be represented using sequential representation. However, in that
ethod, there is a limitation on the size of the array. Moreover, if less elements are stored, memory
ill be wasted.

the linked organization, r______.{:g\:}
. _ Apr.11, Oct.10 - 4M

The stack can grow to any size,
et Y ' Explain dynamic
ii. We need not have prior knowledge of the number of elements, representation of Stack.
iii. When an element is popped, the memory can be freed. Thus Oct.?f)OS ~"_4M ,
. . . Explain static and

memory is not unnecessarily occupied. dynamic representation
iv. Since random access to any element is not required in a stack, Qf Stack. -)

the linked representation is preferred over the sequential

organization.

To represent a stack dynamically, we will have to allocate memory whenever a new element has to
¢ pushed into the stack and free memory when an element is popped.

he stack will have to be maintained as ‘linked list’. For this purpose, we will have to link the stack
lements to each other. This can be done by defining a ‘Node’ structure as follows.

truct node

{
int element;
struct node *next;

ince we have to allocate and deallocate memory dynamically, we will have to use pointers. Hence
p will defined as a pointer to the first node of the list.
teps in creating a Dynamic Stack

top =NULL

Push 10

fop —> 10 |NULL

Data Structure Using ©
3. Push20
top —> 20 10 | NULL
4 Pop
T oo
top----- :

- stackand Queue

As seen from above, every new element pushed will be added to the beginning of the list, and will be

pointed to by top.
The various functions will be as follows:

1. Initializing the stack
void initstack ()
{

top =
}

2. Push
void push(int n)
{
struct node * newnode;
(struct node *) malloc

NULL;

newnode = (sizeof

newnode — element = nj;
newnode — next = top;
top = newnode;

}

3. Checking an empty condition
int stackempty ()

{
return(top == NULL) ;
}
4. Pop
int pop ()
{ struct node*temp;
int nj;
temp = top ;
n = top — element;

top — next;

top =

(struct node)) ;

| free(temp) ;
return(n) ;

}

Since we are using dynamic allocation, the stack can grow to any size. Hence, the stackfull
condition will not arise.

Note: For the above functions, top is assumed to be a global pointer.

Program to implement a stack dynamically.
struct node)
{
int element;
struct node* next;
} * top ; /* top is a global pointers*/
main ()
{
int ch,n;
do
{ printf (“\n1: PUSH”);
printf (“\n2: POP”) ;
printf (“\n3: EXIT");
printf{“\n\n Enter your option ") ;
scanf (“%d”, &ch) ;
switch (ch)
{ case 1:printf
scanf
push(n) ;
break;
case 2:1if (isempty())
printf (“stack underflow”) ;
else
printf (“The popped value is %d”, pop());

}
} while(ch ! = 3);

5. Applications of Stack |

.fpgﬁﬁgEWKJj;jguffj
;ywﬁﬁméﬁm*ﬂfﬂff:
 Applications of Stack?

Stacks are widely used in operating systems, by compiler and by

Oct2011-4M applications. Some of the applications are:
Whatis stack? Discuss

various applications of | Subroutine calls, Recursion
o Interrupt handling

Interconversion between Infix, Postfix and Prefix expressions.

o=

Matching Parentheses in an expression

Oct2011-2M
‘Whatis Recursion?

5.1 Recursion

A function which calls itself is called a recursive function.
The compiler uses a stack to store the values before the next function
call is given.

After the last function call is executed, the compiler pops values from the stack to resume execution
of the previous function call. ‘

As an example, let us consider the recursive function to calculate the factorial of a number.

unsigned long int fact(int n)
{ if (n<=1)
return 1;
else
return (n*fact(n-1);

}
Sequence of function calls given for n =4 are

' . n=4 n=3 n=2 n=2
from main 3 =\? 21 =\? 1!=?A
> 41=4x 3! > 31=3x2! > 20=2x11 21 11=1
—e—] =4x6 < =3x2 < =2x1 e retum 1

24

Each time the fact function is called, the value of ‘n’ is pushed into the stack, so that when contr:
returns from the called function, the value of ‘n’ can be multiplied to the returned value.

Data Structure Using G =, ——— o stEckand Queus

| After the last function call finishes execution and a value is returned, the value of n is popped from

| the stack and multiplied with the returned value. This process continues till the first function call is
' reached.

A similar strategy is used when control has to be transferred to a subroutine or to process the
interrupt subroutine. In order that the execution of the calling routine is resumed, the values have to
be pushed onto a stack and popped after the execution of the subroutine is over.

5.2 Polish and Reverse Polish Notations

An expression consists of operators and operands. The operands may be identifiers and constants
and operators are symbols representing various operations. An expression can be written in three
formats depending upon the placement of operators with respect to the operands.

Infix

In the infix notation the operand is placed between the operands. Example A + B. This operator is

applied to the two operands surrounding it. Hence it may be necessary to explicitly specify the order
of operations by using parentheses.

Example

If , we want to divide a number A by the sum of numbers B and C, the expression will be

A/B + C. However, this will be wrong since A/B will be performed first. Hence the correct
expression will be A / (B + C).

This problem of ambiguity can be removed by using two non-parenthesized formats called prefix
and postfix forms.

Prefix or Polish

In the prefix form, the operator precedes the two operands

Example +AB

Postfix or Polish

In this format, the operator follows the operands Example AB+

Converting from Infix to Prefix and Postfix ’ |

Infix Prefix Postfix |
i. A+(B*C) (A+(B*C)) (A+(B*C))
(A+*BC) (A+BC*)
+A*BC ABC *+

ii. (A+B) *(C-D) (A+B)*(C-D)) ((A+B)*(C-D))
(+AB* (C-D)) (AB+*(C-D))

(A+B*-CD) (AB+*CD-)

+AB-CD AB+CD-

The above conversions can also be done by the following steps.
1. Completely parenthesize the infix expression to specify the order of operations.

ii. Move each operator outside its corresponding left parenthesis (for Prefix) or right parenthesis
(for Postfix)

iii. Remove all parentheses.

Example
Infix (A+B) (C—D)
C D))
Prefix \/
*+AB -CD
((A+B)Y(C: D))
Postfix \}‘M
AB+CD-*

Importance of Prefix and Postfix notations

Since they are free from parentheses, their evaluation is simplified. The compiler converts an infix
expression to the postfix format before evaluating it.

Algorithm to Convert an Infix expression to Postfix

To convert an infix expression to postfix, we will need

1. A string containing the infix expression, which is parenthesized.
2. A stack (opstack) which will store the operators.

3. A string to store the postfix éxpression.

Algorithm
1. Opstk is the empty stack.
2. Read a character from the infix string.

a.

If it is an operand add it to the postfix string.
If it is an operator or opening bracket (add it to the opstk)

If the character is closing bracket,
ch = pop ()
while (opstk is not empty and ch is not' (‘)
{
add ch to postfix string

ch = pop ()
} .

Repeat from 2 till the infix string does not end.

While stack is not empty, pop from stack and add to postfix
string.

>/Oct‘1412 M .

Stop.
Let us now evaluate this algorithm by taking examples.

Infix string — (A+B)*C
((
A A (
+ (+
B AB (+
) AB +
C AB +C *

AB +C*

Infix string ((A+B) * (C—D)) /E

((
((«
A A ((
+ ((+
B AB ((+
) AB+ (
* (*
((
C AB +C (*(
- *(-
D AB +CD (*-
) AB +CD - ¢
) AB +CD -*
/ AB +CD -* /
E AB +CD - *E /
AB+CD -*E/

‘Write an algonthm to ,
convert Infix Expression
to Postfix Express:on

Apr.2011 - o

Explain algorithmto
evaluate infix to postﬂx
j‘;expresswn o { -
- Oct.2010 - M .
, Exptamalgonthmta
. convert infix expression
to its equivalent postfix

expression.

Apr.2010 - 4M
_ Explain algorithmto
convert infix expression
to its equivalent postﬁx
‘expresswn ‘

Dala Struetuetising C

®

Evaluating a Postfix expression

To evaluate a postfix expression we need.
1. A postfix expression in a string like ab + c*
2. A stack to store the operands (opndstk).

Oct.2009 - M

Explain algonithm to
evaluate postfix
expression.

Example

v stackiand Qliede

apply the operator to these two operands

The algorithm is
1. Opndstk is the empty stack.
2. Read a character from the postfix string.
3. if it is an operand
push it into the stack
else
pop two operands from the stack
push the result into the stack
4. if postfix string has not ended go to 2
5. Pop from stack and display.

We will analyze the above algorithm for the postfix string AB +CD —* (corresponding to infix
(A+B)*(C-D). If the values are 5, 4, 6 and 2 respectively, the contents of the stack operands and
result after each iteration will be.

Character

5

5,4

9 5 4

9,6

9,6,2

9.4 6 2

1 iN|o|+|[&lo

36 9 4

5.3 Interconversion between Infix, Postfix and Prefix

Expressions

Converting an Infix expression to Prefix

Example
Infix ((A+B) *C)
Prefix * +ABC

We need:

1. Aninfix string fully parenthesized
2. A stack to store operators (opstk)
3. A stack to store operands (opndstk)

Algorithm
1. Read a character from infix string
2. If it is ‘(“ or operator
push in opstk
3. Ifitis an operand
push it in opndstk
4, If<y »
while({ch = pop(opstk))!="(")"
{
op2 pop (opndstk)

opl pop (opndstk)
Form an expression as ch opl op2
Push expression in opndstk

}
5. Repeat from 1 till infix string does not end.
6. Pop from opndstk and display.
7. stop.

Analysis
Infix string ((A+B) *C)

((

(((

A « A

+ ((+ A

B AB

) (+AB +AB

* ¢ +AB

c * +AB,C

) *+ABC “+ABC

©voni Blackand Quete

Conversion from Prefix to Infix

Example

Prefix *+ ABC
Infix ((A+B) *C)

We need:
1. The prefix string
2. A stack to store operators and infix expression.
Algorithm
1. symb is next input character
Oct.2011 - 4M 2. If symb is an operator
“Write an algorithm for =~ .
prefix to infix conversion Push symb into stack
- ofgan expression. 3. If symb is not operator
exXpr = symb

while(top of stack contains operand)

{

opnd = pop();

opr = pop(};

expr = parenthesized expression of opnd opr
expr

}

push expr into stack
4. repeat from 1 till string does not end.
5. Pop from stack and display.
Analysis
Prefix string*+ AB-CD

+ *+

A *+ A A

B * (A+B) (A+B)

- * (A+B), -

C *(A+B),—, C C

D * (A+B) (C-D)
((A+B) * (C-D)) | ((A+B)*(C-D))

Data Structure Usinge @

Conversion from Postfix to Infix

Example
. Postfix AB+C*
Infix ((A+B) *)

We need:
1. A postfix string
2. A stack to store operands and infix expressions.

Algorithm
1. Symb is next input character
2. If symb is an operand
push symb in stack
3. If symb is not operand

opnd I = pop ();
opnd2 = pop ();
expr = (opnd 2 symb opnd 1)

Push expr in stack
4. Continue from 1 till string does not end

Pop from stack and display.
Analysis
Postfix string = AB + CD — *

[Symb] Stack - Expr
A A
B *+
+ *+ A A
C *(A+B) (A+B)
D * (A+B), —
- *(A+B), -, C C
* * (A+B) (C-D)
((A+B) * (C-D)) [((A+B)*(C-D))

Evaluating a Prefix Expression

We need:
1. A prefix string (pre)
2, A stack to store operators and operands(str)

 Stack and Quieue

Algorithms

1. stk is the empty stack.
2. - Read a character from the prefix string (symb)
3. If symb is an operator
push it into stk
4, If symb is an operand
if top of stk contains an operand

opnd1 = pop()

opr = pop()
Apply opr to opndl and symb Push result into stk.
else
push symb in stk
5. Repeat from 2 until prefix does not end.
If stk is not empty '
opnd2 = pop ()
opr = pop ()
opndl = pop ()
result = apply opr to opndl and opnd2.

Push result into stk
- 7. Pop from stk and display
8. Stop

5.4 Matching Parentheses in an expression

An expression containing parentheses will be considered invalid if the parentheses are not balanced.
A Stack can be used to check if they are balanced or NOT.

Example
[(atb) *C] Balanced
{[(atb) *C Imbalanced

Data Structure Using € - o . stackand Queue

Algorithm
1. Read a character ch from input expression.
2, If it is an opening bracket, push it into the stack.

3. If it is a closing bracket,
if (stack is not empty)
{ chl = pop()
If chl is not the closing bracket of ch
{ display - parentheses not balanced
goto 6
bl

else
display parentheses not balanced, goto 6

4. repeat from 1 till input expression ends
5. If stack is not empty
display —parentheses not balanced
display — valid expression

6. Stop.

6. Queue

A queue is another important data structure which finds applications in numerous situations. In this
chapter, we will study the concepts of a queue, the operations and applications of this data structure.

We are all familiar with the concept of a queue in day-to-day situations like queues at a bus stand,
booking office etc. With reference to computers, queues are used for resource scheduling.

7. Definition of a Queue

A queue is an ordered collection of items from which items may be deleted from
(or removed from) one end called the front and into which items may be inserted at the other end
called rear.

Data Structure Using © 7o U stackand Qiiete

The elements are added and deleted in a FIFO (First In First Qut) manner.

1 Example ‘
Apr.2011 - 2M The following diagram shows a queue with three elements A,B and
Explain Queue with C. A is at the front and C is at the rear.
example. ‘

LA B]cC]|
T T
Front Rear

A new element, D will be added at the rear.
lAlB]c]o]
T T

Front Rear

An element can be deleted only from the front. Thus, A will be the first to be removed from the
queue.

LBl c]oD]
1 T
Front Rear

8. Operations on a Queue

The operations on a queue are on similar lines to those on a stack.

{/?:} 1. Create: Creates a new queue. This operation creates an
Oct.2015 ~ 4M \ empty queue.

What is: queue? Explain
its operations in detail.

2. Add or Insert: Adds an element to the queue. A new element
can be added to the queue at the rear.

Apr.2012 - 2M

What is Queue? State 3. Delete: Removes an element from the queue. This operation

SZQZﬁggirﬂfgieue; removes the element, which is at the front of the queue. This
c J operation can only be performed if the queue is not empty.

The result of an illégal attempt to remove an element from an empty queue is called
underflow.

4. Isempty: Checks whether a queue is empty. This operation returns TRUE if the queue is
empty and FALSE otherwise.

P Smauplse el neadRee

| 9. Implementation of Queues

Queues can be implemented in two ways:

1. Static using Arrays
2. Dynamic using linked representation

9.1 Static Implementation of Linear Queues

Logically, there is no limitation on the number of elements in a queue. However, since we are using
an array to implement it, there will be an upper limit on its size. Thus, we will have to check for a
queuefull condition before adding any element to the queue.

Declaration

A queue to be implemented using an array will require,

1. An array to store the elements.

2. An integer called front which stores the position of the first (or oldest) element of the queue.

3. An integer called rear which will store the position of the last (or newest) element of the
queue. :

The declarations will be
#define MAX 10
#define FULL MAX-1
#define EMPTY -1
struct queue
{ int front, rear;
int items [MAX];
}i

struct queue gl ; /*ql is the actual queue */

We can also use typedef to create queue as a new data type name.

typedef struct
{ int front,rear;
int items [MAX];
} Qs
0 gl,qz2; /* gl and g2 are two queues */

Data Structure UsingG =~ o stackand Quisue

Operations on the Queue

1.

Creating an empty queue: Once we declare a variable of type Q, we have to initialize the .
front and rear values to indicate an empty queue. This can be done by initializing them to —1.
void initgueue(Q *pq)

{ pg—>front = pg—o>rear = EMPTY;

}

" The function will be called as

initqueue (&ql) ;

Checking for an empty queue: A queue will be empty when both, front and rear are at the
same position. For example, if the queue contains A, B, and C, the positions of front and rear
will be

front
rear

After removing the elements A, B and C, front and rear will coincide. Thus, the queue empty
condition can be written as

int isqgempty (Q *pqg)

{

return(pg—o>front == pg—rear);

}

Checking for a full queue: As we insert elements into the queue, rear gets incremented.
At some stage it will reach the array limit i.e., MAX-1 after which no more elements can be
added. Thus, the function can be written as

int isfull(Q *pq)
{ return(pg —rear == FULL);

}

Adding an element to the queue: A new element is added at the rear end of the queue.
Since, we have initialized rear to —1 the first element should be put at position 0. Thus, rear
should be first incremented and the element should be stored at that position.
void addg(Q *pg, int num)
{ 1f(tisfull (pqa))
pg—items [++ (pg—>rear) | =num;
else :
printf (“\n Sorry, queue is full \n”);

}
Calling the function: addq (&ql,n);

main
{
0]

do
{

Deleting an element from the queue: An element has to be deleted from the front. As is the
case for rear, front has to be first incremented (since it has been initialized to ~1) and then the
element at that position has to be returned.

int delg(Q *pq)
{
int n

n = pq — items{++(pg = front)l;
return n;

}

Before this function is called, the queue empty condition has to be checked for. Calling the
function. ' '
if (isgempty (&ql)==1)
printf (“Queue empty”);
else :
n = delqg(&ql);

A simple menu driven program to implement a queue using the declaration and functions
discussed above is as follows. ‘

/* Hllustrates operations on a Linear Queue */
/*Declarations and functions to be written here */

0

al; /* Local declaration */

int choice;
initqueue (&ql) ;

printf (“\nl: ADD”");

printf (“\n2: DELETE”");

printf (“\n3: EXIT”");

printf (“\n\n Enter your option :”);

scanf (“%d”, &choice);
switch(choice)
{
case 1 : printf(“\n Enter the data to be added”);
scanf (“%d”, &n) ;
addg(&gl,n) ;
break;
case 2 : if (isgempty (&gl))
printf (“\n Queue is empty !”);
else

Pelismuciretismg G | Stackand Queue

printf (“\n %d is removed “, delq(&gl));
break;
case 3 : printf(“\n Exiting"”);

}

} while(choice !=3);

Output

1 : ADD

2 : DELETE
3 : EXIT

Enter your option: 1

Enter the data to be added 20

1 : ADD

2 : DELETE

3 : EXIT

Enter your option: 2
20 is removed.

1 : ADD

2 : DELETE

3 EXIT

Enter your option: 2
Queue is empty!

1 : ADD

2 : DELETE

3 : EXIT

Enter your option: 3
Exiting......

9.2 Static Implementation of Circular Queue

Just as we implement a stack using a linked list, we can implement a queue in a similar manner.

A queue can be considered as a list in which all insertions are made at one end called the rear and all
deletions from the other end called front.

A queue can be easily represented using a linked list.

The front and rear will be two pointers pointing to the first and last node respectively.

struct node
{ struct node*next;

int info;

} * front, *rear;

Data Structure Using C @ r———

The various operations are illustrated below.

1. Initqueue

front = rear = NULL

2. Add 10
front ----->
romr - 3110 | NULL if (front == NULL)
newnode front = rear = newnode
3. Add 20
front —3110 | NULL |---- 220 | NuLL rear > next = newnode
/” newnode rear = newnode
rear /
4. Add 30
10 20 | NULL '""3 30 | NULL
front rear e
rear - next = newnode
rear = newnode
5. Delete
temp
10 e 5 20 2130 1 NULL
front ,/ rear
front
temp = front;

front = front -> next;

free(temp);

Disadvantage of a Linear Queue \

We have seen the queue operations earlier. Let us consider the following scenario for a queue with
aximum size 5.

Initially, the queue is empty i.e. front and rear are at —1. After the elements A, B, C, D, and E arc
added, the queue will look like

[(aA]s[c[p[E]
1) 1)
front rear
If we remove two elements from the queue, we have,
[[Tclo]E]
t ' 1

front rear

We have two vacant positions at the beginning of the queue but we cannot add new elements there
since rear has reached MAX~—1 which is the queue full condition.

Thus, even if elements are removed from the queue, new elements cannot take their positions.

Notion of a Circular Queue

In order to reuse the vacant positions, we will have to bring rear to the 0™ position if it is empty.

ie.,

if (rear == MAX-1)
rear = 0;

else
rear = rear+l;

This can also be written as rear = (rear+1) % MAX;
The queue is logically treated in a circular manner.

Example

Assuming that the queue contains three elements as in the previous example i.e.

[[[clbofE]
1 1

front rear

Now, we can insert an elements F at the beginning by bringing rear to the first position in the queue.

[F] Tcole]
1

rear front

Data Structure Using C

e

 Stack and Quee

This can be represented circularly as shown.

Circular Queue

A peculiar situation arises when the queue is full.

In the above example, if another element, G is added to the queue, it will look like

2
%

Rear front

Full Circular Queue

i.e. rear and front coincide. But rear and front coincide even when the queue is empty! Hence there
is an ambiguity.

rear = = front cannot be used for both i.e. to the check for an empty queue as well as the condition
for a full queue. Hence some method of resolving this problem is needed.

We shall keep the rear = = front condition as a check for the empty queue since initially both are
initialized to the same value. Thus, we need another method to check for a full queue.

There are three possible solutions

1. Use a counter to keep track of the number of elements in the queue. If this counter reaches
MAX, the queue is full.

2. Allow only MAX~1 values to be put in the queue i.e. use one less element of queue. Thus the
queue full condition will occur when
(rear + 1) % MAX = =‘front

3. The values of front and rear could be set to some values that are not valid array indices to
indicate an empty condition.
i.e. if rear becomes equal to front after a remove operation it indicates queue empty and hence
they could be reset to —1 and (rear = = —1) && (front = =—1) will be the conditions for queue
empty.

If rear becomes equal to front after an add operation, it implies the queue is full. Thus rear ! = 1

&& front !=—1 will be the condition for queue full.

Functions for Circular Queue

1.

Initialize Q
void initqueue(Q *cq)
{

cqg —» rear = cqgq = front = 0;
}

Is empty
int isemptycqg(Q *cq)
{

return({cqg — rear == cq — front };

}
Is full

int isfullcqg(Q*cq)
{
return((rear +1)% MAX == front);

} v .
Here we have used the method (2) to solve the conflict between empty and full condition.

Add

void addcg{(Q *cg, int num)

{

cg > items{cg — rear] = num;

cq — rear={(cq — rear +1) % MAX; /*Increment rear circularly */

}

Delete
int delcq(Q *cq)

{ n= cq - items [cq — front]l):

cqg —> front= (cq — front+1)% MAX;/* Increment front circularly */
return n.

}

The following program illustrates a circular queue operations for an array of size
MAX =3,

/* lustrates circular queue operation */
/*Declarations and Functions here * /
main ()
{ Q0 ca1;

int num, choice;

initqueue (&cql) ;

do

{

printf (“\n 1:ADD”) ;
printf (“2 : DELETE”) ;
printf (“3:EXIT”) ;
printf (“\n Enter the option :”);
scanf (“%d”, &choice);
switch(choice)
{ case 1 : printf(“\n Enter the number :”);
scanf (“%d”, &num) ;
if(isfullcqg (&cgl))
printf (“\n Queue is full \n”);
else
addcq (&cql, num) ;
break;
case 2 : if (isemptycqg(&cqgl))
printf (“\n Empty Queue !”);

else
printf (%d is deleted “ delcqg(&cql));
case 3 : printf(”\n Exiting”");
}
}while (choice ! = 3);

tput

ADD2 : DELETE3: EXIT

nter the option 1
nter the number : 10

ADD2 : DELETE3: EX
nter the option 1
nter the number : 20

Data Structure Using €117 ¥(. 32 Lo stackand Quisue

1 : ADD2 : DELETE3: EXIT
Enter the option 1
Enter the number : 30

1 : ADD2 : DELETE3: EXIT
Enter the option : 2
10 is deleted

1 : ADD2 : DELETE3: EXIT
Enter the option
Enter the number

1 : ADD2 : DELETE3: EXIT

Enter the option : 3
Exiting......

9.3 Dynamic Implementation of Circular Queue

In a circular queue, implemented as a test, the last element will point to the first. Since it is a circular
list, only one pointer to the list is needed to perform all operations on the list.

Operations on Circular Queue

1. gptr = NULL;

2. Add 10
l— 10 -1!‘]
aptr
3 Add 20

=T

10 20 30

g

5. Delete

10 20 . 30 .
h

s
3
.
/

qf;tr

These operations can be performed as follows

1. Initialize Queues
void initq()

{

}

2. Add
void addcg(int n)
{

gptr = NULL;

struct node * newnode;

newnode =(struct node *) malloc(sizeof (struct node)) ;
newnode — element = n;
if (gptr == NULL)

{

gptr = newnode;
aptr — next = gptr;
}
else
{

newnode — next = gptr — next;

gptr — next = newnode;
gptr = newnode;

}

3. Queue empty

int emptycqg()
{

}

return{(gptr == NULL) ;

0 Stackand Queve

4. Delete

int deletecqgl)
{
int n;
struct node * temp;

temp = gptr — next ; n = temp — element;
if (temp == gptr) /* only one node*/
{

free(temp) ;

Qgptr = NULL;

return n ;

gptr — next = temp — next;
free (temp) ;S
return n;

10. Types of Queues

o ch201 1o 2M A queue can be of two types:

‘State: dtfferent types of
Queue - \

i

1. Linear Queue

ii. Circular Queue

10.1 Linear Queue

In this queue, the elements are arranged in a sequential manner such that front position is always less
than or equal to the rear position. When an element is added, rear is incremented and when an
element is removed, front is advanced. Thus, front always follows rear.

Example

LA] B]C]
front rear

Data Structure Using C

S —

10.2 Circular Queue

Example

front €~~~

Circular Queue

11. Priority Queue

In a queue, the elements are inserted at the rear end and deleted from
the front. Hence the FIFO ordering is maintained and all insertions
and deletions are done in a strict sequence. Even though the element
themselves may have some inherent order among themselves it is
ignored. ‘

However, in some cases, this strict order needs to be violated and the
intrinsic ordering among elements will determine which element
gets removed first.

Definition
esult of its basic operations.

xample

cheduling of jobs by the operating system.

. Stack and Queue

In this queue, the elements are arranged in a sequential manner but can logically be regarded as
circularly arranged. The rear and front move in a clockwise direction.

3
G:t.2012—-2M , {::\'}

What is Circular queue?
How it is represented:

Apr.2012 — 2M ,
Define: Circular Queue

0ct.2009 ~ 2M

@at is Circular.Queue?

J

Apr.2012 - 4M
What is Priority Queue?
Explain in short.

Apr.11, 10, Oct. 10 - 2M
What-is Priority Queue?

priority queue is a data structure in which the intrinsic ordering among the elements decides the

DataswuomsRsig Gl

Here the operating system assigns priorities to each type of job. The jobs are placed in a queue and
the job with the highest priority will be executed first.

Types of Priority Queues

1. Ascending Priority Queue: Elements can be inserted arbitrarily but only the smallest element
can be removed.

2. Descending Priority Queue: This allows deletion only of the largest element.

Elements of the Priority Queue

The elements need not be numbers or characters but they may be complex structure that are ordered
on several fields like Telephone directory listing comprising of last name, first name, address.

The basis of ordering need not be a part of the element. It could be an external value on the basic of
which ordering is done for example - time.

Thus a queue can be viewed as an ascending priority queue whose elements are ordered by time of
insertion. The element having the smallest time value comes out first.

List Implementation of Priority Queue

A Priority Queue can be implemented dynamically in two ways.
1. Maintaining an ordered linked list of elements

2. Maintaining unordered linked list of elements

Let us consider implementation of an ascending priority queues.

i Ordered List Implementation: In this method, the elements are added to the list in such a
way that the list is in the sorted order.

Thus, when an element is to be added to the priority queue, it is inserted in its correct position
in the queue.

For deletion, the first element (which is the smallest element) is removed.

Example
1. front = rear = NULL
2. Add 10

front——3{ 10 |NULL

rear

Data Structure Using C e —— @ . Stack and Queue

3. Add 5

front—> 5 10 [NULL

rear
4. Add 20
front—> 5 ' 10 20 [NULL

rear

5. Add 15
front —> 5 > 10 15 20 |NULL
rear

ii.

Priority Queue as unordered list: In this method of implementation, elements are added to

the rear of the queue. Thus, insertion is a simple process.

However for deletion, the entire list has to be examined in order to find the smallest element,

which is then removed from the list.

Example
1. front = rear = NULL

2. Add10

Drasmeetsge | Sladkand Quede
4, Add 20
front [0 N 20 ><
rear /
5. Delete
Tty | 5 o 20 [

12. Doubly-Ended Queue (DEQUE)

A DEQUE is an ordered set of items into which items may be inserted and deleted from either end.
If the two ends of the queue are called left and right, then the four operations on the deque will be

1. addleft or insertleft
2 addright or insertright
3 deleteleft

4. deleteright
4

DEQUE can be of two types:

Input-Restricted Deque (IRD): This is a deque which allows insertions only at one end but
allows deletions at both ends of the deque.

Valid operations
addleft, deleteleft, deleteright

2. Output-Restricted Deque (ORD): This is a deque which allows deletions at only one-end of
the deque but allows insertions at both ends.

Valid operations
addleft, addright, deleteleft

PaaStuceteing O } . StackandQueue

Example

Let us consider a deque, IRD and ORD implemented using an array. Left and right represent the two
ends of the queue.

Operation Deque IRD ORD
v asgenw [A] | 1] AL [T] (AL 1 T
Left Left Left
Right Right Right
2. Adaright) [A[B] | | Invalid alB] |]
L R L R
3. addett©) [c|al[B] | [c]a]] [c]a[B] |
L R L R L R
4. Deleteright() |c|a] [| [c] [T] Invalid
L R L
R
5. Deleteleft _ [A]B]]

L R

ZJl—E
N

13. Applications of Queues

4
1. Queues are used in computers for scheduling of resources to /Ocm 4, Apr.15 10__%;:%
S d 7.

applications. These resources are CPU, printer, etc. What are the
:) o)))) Applications of Queue?
2. Multiple print jobs given to a printer are organized in the ' ,
FIFO manner in a print queue and given to the printer. 0Oct.2009 - 44
printq g p What is Queue? What
. . . - - are the various
3. In batch programming, multiple jobs are combined into a Applications of Queue?

batch and the first program is executed first, the second is \ /

executed next and so on in a sequential manner.

13.1 CPU Scheduling Algorithms

In a multiprogramming environment, multiple processes are to be handled by the CPU. These
processes can be

. Interactive programs
. Batch jobs
. System tasks

All these processes need the CPU. Hence, they should be scheduled properly to increase the CPU
utilization and throughput. The scheduling is done by using queues.

The various methods used for scheduling the processes are
1. FCFS — First Come First Served Method
2. Round Robin Method

First Come First Served (FCFS)

. New jobs or processes are added to the queue at the end.

. The CPU executes the processes at the front of the queue.

. After the process is executed, it switches to the next process.

. Once the CPU is allotted to a process, it is released when the process is completed.

The average turn around time is an important criterion to determine the performance. Turn around
time is the time interval between submission of a job till its completion.

Example
Job | Burst Time (Job time) |
1 12
2 6
3 3

J1 J2 J3
0 12 18 21

12+ 18 +21
.. Average turn-around time = -3 = 17

Data Structure UsingC - 0 o . Siackand Queue

Advantages

1. Itis very simple method of scheduling,
2. Asingle queue can be used to implement FCFS.

Disadvantages

1. A smaller job or a high priority job may have to wait for a long time.
2. Ifthe job at the front is an I/O job, it will utilize the CPU for a long time.

Round Robin Algorithm

This is a very popular method and is mainly used in time-sharing systems. Instead of waiting for the
current job to be completed before taking the next job, each job in the queue is assigned a small unit
of time called time slice or time quantum.

The CPU selects the first job from the queue, executes it for one time slice. After the time slice is
over, it switches over to the next job in the queue. The interrupted job is added back to the end of the

queue.
If the job completes execution before the time slice, it released the CPU.

Round Robin algorithm is implemented using circular queue.

BurstTime
1 12
2 6
3 3

If a time slice = 3 units, the Round Robin Algorithm will work as shown.

K J2 J3 J1 J2 JH J1
3 6 9 12 15 18 21

1T

J3 over J2 over J1 over:
9+15+21
Average turn around time = 3 = 15
Advantages
1. All jobs get a fair share of the CPU.
2. Priorities can be assigned to the jobs so that a higher priority job does not have to wait for a

long time for its time slice.

Disadvantage: Implementing the Round Robin method is more complex.

Data Structure UsingC. @ Stack and Queue

Solved Examples

1 1. Convert the following Infix Expression into Prefix
SlSh b Expression:
o - i (A+B)/CxD-E ii.. A-(B+C/D)AE

Solution

The steps to convert any infix expression into prefix are:

1. Reverse the infix expression.

ii. Make every ‘(‘ (opening bracket) as ‘)’ (closing bracket) and every ‘)’ as ’(".
iii. Convert the modified expression to postfix form.

iv. Reverse the postfix expression.

i (A+B)C*D-E
a. Step 1: Reverse the infix expression
E-D*C/)B+A(
b. Step 2: Make every ‘(‘ as ‘)’ and every ‘)’ as *(‘
E-D*C/(B+A)

c. Step 3: Convert the expresswn to postﬁx form

1. E-D*C/(B+A) Empty Empty - Initially

2. -D*C/(B+A) E Empty E Print the operand/ Attach the
operand at the end of postfix
expression

3. D*C/(B+A) _ _ E Push the current operator
onto the top of the stack

4. *C/(B+A) D _ ED Attach the operand at the

: end of postfix expression

5. C/(B+A) * - ¥ ED Push the higher precedence
operator onto the top of the
stack

6. /(B +A) C - EDC Attach the operand at the
end of postfix expression

7. (B +A) / -/ EDC* Same priority operators so
pop one and at end of
postfix.

8. B+A) (- 1(EDC* As opening bracket so push
it onto stack

9. +A) B -1 (EDC*B Attach the operand at the
end of postfix expression

10. A) + -/ (+ EDC*B Attach the operator onto
stack

11.) A - 1(+ EDC*BA | Attach the operand at the
end of postfix expression

Data Structure UsingC == — Stackand Queue

12. Empty) -/ EDC*BA + | Pop all operators until (from
stack and add at end of
postfix
13. Empty Empty empty | EDC*BA+/ | Pop all operators until empty
- stack and add at end of
postfix

Reverse the resultant expression, we get the prefix as “—/+ AB * CDE”
ii.. A-(B+C/D)AE
a. Step 1: Reverse the infix expression
EA)D/C+B(-A
b. Step 2: Make every ‘(‘ as)’ and every) as (¢
EAMD/C+B)-A

C. Step 3: Convert the expression to postfix form:
Steps | Expressien | Sumont | Stack | output | Comments
1 EA(D/C+B) A Empty Empty | - Inltlally
2 A(D/C+B)-A E Empty E Print the operand/ Attach the
operand at the end of postfix
expression
3 (D/C+B)-A A A E Push the current operator
onto the top of the stack
4 D/C+B)-A (A E As opening bracket so push it
onto stack
5 /IC+B)-A D A ED Attach the operand at the end
of postfix expression
6 C+B)-A / / EDA Higher precedence operator
is popped and attach at the
end of postfix expression
7 +B)-A C / EDAC Attach the operand at the end
of postfix expression
8 B)-A + + EDAC/ Higher precedence operator
is popped and attach at the
end of postfix expression
9)-A B + EDAC/B Attach the operand at the end
of postfix expression
10 -A) EDAC/B+ Pop all operators until (from
stack and add at end of
postfix
11 A - - EDAC/B+ Push the current operator
onto the top of the stack
12 Empty A - EDAC/B+A Attach the operand at the end
of postfix expression
13 Empty Empty empty EDAC/B+A- Pop all operators untill empty
stack and add at end of
postfix

everse the resultant expression, we get the prefix as “ — A+B/C DE”

2. Evaluate the following postfix expression using a Stack:
AB/ICD*+A=6,B=2,C=3,D=4 ‘
Solution

-

1. AB/CD*+ Empty - - - Initially

" Push the operand onto the top
2 B/CD™+ 6 B B B of the stack
" 2 Push the operand onto the top
3. [co™ 6) j j of the stack
- Perform the division operation
4. co™+ 3 6 2 6 between 6 and 2
5 D*+ 3 } : } Push the operand onto the top
) 3 of the stack)
4 Push the operand onto the top
6. *+ 3 - - - of the stack
3
12 Perform the muiltiplication
7. * 3 3 4 12 operation between 3 and 4
Perform the addition operation
8. | empty empty 3 12 15 | potwoon 3 and 12 P

3. Convert the following infix expressions into postfix.
i. A+B)*C ii. (A+B)*(C+D)

Solution

The given

(A+B)*C Initially

2 A+B)*C ((- Push the opening bracket onto
the top of the stack

3 +B)*C 1A (A Print the operand/ attach the
operand at the end of posifix
expression '

4 B)*C + (+ 1A Push the current operator onto
the top of the stack

5 »C B (+ AB Attach the current operand at
the end of postfix expression

6 *C) - AB+ Pop the top operator from stack

until ‘(" and add that operator at
the end of postfix expression

7 C * * AB+ Push the current operator onto
the top of the stack

8 Empty C * AB+C Attach the current operand at
the end of postfix expression

9 Empty - Empty | AB+C* Pop all operators from stack
and add at the end of postfix
expression

The Postfix Expression is AB+C*

Data Structure Using C @ . Stackfgnﬁ;@ggue

ii. (A+B)*(C+D)
The given expression is (A+B)*(C+D)

Steps Expression Current Stack- Output |
' (Input) Symbol {postfix Exp) .
1 (A+B)*(C+D) Empty Empty - Initially
A+B)*(C+D) ((- Push the opening bracket
onto the top of the stack
3 +B)* (C+D) A (A Print the operand/ attach the
operand at the end of postfix
expression
4 B)* (C+D) + (+ A Push the current operator
onto the top of the stack
5) (C+D) B (+ AB Attach the current operand at
the end of postfix expression
6 *(C+D)) - AB+ Pop the top operator from
stack until ‘(" and add that
operator at the end of postfix
expression
7 (C+D) * * AB+ Push the current operator
onto the top of the stack
8 C+D) (*(AB+ Push the opening bracket
onto the top of the stack
9 +D) C * AB+C Attach the current operand at
the end of postfix expression
10 D) + *(+ AB+C | Push the current operator
onto the top of the stack
11) D *(+ AB+CD Attach the current operand at
the end of postfix expression
12 Empty) * ‘AB+CD+ Pop the top operator from
stack until ‘(' and add that
operator at the end of postfix
. expression
13 Empty - - AB+CD+* Pop all operators from stack
and add that operator at the
end of postfix expression

The postfix expression is AB+CD+*

1
4. Write a function to accept size of stack and insert element b
till it is full. Apr. -
Solution

Function to accept size of stack and insert element till it is full
-void push{()
{
int item, maxsize, top;
printf (“\n enter stack size:-*");
scanf (“%d”, &maxsize);
if (top==maxsize-1)

printf (“\n stack is full”);
getch();
exit(0) ;

else

{

printf (“\n enter the element to be inserted:-");
scanf (“$d”, &item);

top = top + 1;

stack [top] =item;

5. Convert the following infix expression into prefix:

i. A+B*C/D ii. A+B+C+D

Solution

i A+B*C/D
=A+B*/CD
=A+*B/CD
=+A*B/CD

) +A*B/CD

ii. A+B+C+D
=+AB+C+D
=++ ABC+D
=+++ ABCD
+++ABCD

6. Write a “C’ program to reverse given string using stack.

Solution
#include<stdio.h>
#include<conio.h>
void main()
{ char str[80];
int 1,3j.k,swap;
clrscr();
printf (“\n Enter the String”) ;
gets(str);
for (i=1;i<=strlen(str); 1++)
{ for(j=0;3<1;j++)
{

if (stri]l>=strij])
{ swap = strljl;
str[j] = strlil;
}
}

}

printf (“\n The String is in Reverse order”);
puts (str) ;
getch{) ;

7. Convert the following infix expression into postfix
expression: A*(B+CAD)-E/F * (G +D)

Solution

Convert Infix Expression into Postfix Expression

AB+C*D=*/E-F*GD +

ABA"D*/+E-FGD*+

A"BD=*/+-EFGD* -+

A"BD #/+-EFGD *+-

8. Convert following infix expressions into postfix.
ii A+B=*C ii.. A+B+C

Solution

i A+B=*C

(Precedence of * is higher than of +)
Step 1: A +(B*C) convert the multiplication
Step 2: A + (BC*) convert the addition
Step 3: A (BC*) + Remove parentheses
Step 4: ABC*+ Postfix

ii. A+B+C
(Precedence of + is higher than of *)
Step 1: A + (B+C) convert into the Parentheses
Step 2: A + (BC+) convert the Multiplication
Step 3: A (BC) + Remove parentheses

Step4: ABC++ Postfix

9. Write a program to accept size of stack and add elements

onto the stack one by one which are accepted from user
until stack is full.

Solution

#include<stdio.h>
#include<conio.h>

[S Apr.zom - M

[0ct2009~4M

Data Structire Using C.

* Stack and Queue

void main()
{
int top, s([10];, item, choice;
clrscr();
top =-1;
for (;:)
{
printf (“\n 1. Insert “4);
printf (*\n 2 Display”);
printf (“\n Enter your Choice *);
scanf (#%d", & choice);
switch (choice)
{
case 1:
printf (“\n Enter the Item to be Inserted *);
scanf (“%d”, &item);
push(item, &top, s);
break;
case 2:
display (top, s);
break;
}
}
getch () ;
}
void push(int item, int *top, int sl(l)
{
if (*top == STACK_SIZE -1)

printf (“\n Stack overflow\n");
return;
}
s[++(*top)] = item;
}
void display(int top, int s[])
{
int i;
if (top == -1)
(.
printf (“Stack is Empty\n”) ;
return;

printf (“\n The Contents of the Stack \n”);
for (1i=0;i<=top;i++)
{
printf (#3d\n”, siil);
}

©
-
1 10. Write a ‘C’ Program for Dynamic Implementation of

st G0 Queue.
- Oct2012-2M
e ' = Solution

A Program for Dynamic Implementation of Queue, i.e.,
implementation of Queue using linked list is as:

#include<stdio.h>
#include<malloc.h>
struct node // structure to represent Queue
node
{
int info;
struct node *1link;
}*front=NULL, *rear=NULL;

main ()
{

int choice;

while (1)

{ printf("1.Insert\n");
printf ("2.Delete\n");
printf ("3 .Display\n");
printf ("4.Quit\n");
printf ("Enter your choice : ");
scanf ("%d", &choice);
switch(choice)

{
case 1:
insert () ;
break;
case 2:
del () ;
break;
case 3:
display () ;
break;
case 4:
exit(1);
default: ’
printf ("Wrong choice\n");
}/*End of switch*/
, }/*End of while*/
}/*End of main()*/
insert ()
{
struct node *tmp;
int added item;

Data Structure Using G+ .

tmp = (struct node *Ymalloc (sizeof (struct node));

printf ("Input the element for adding in queue : ");

scanf ("%d", &added item) ;

tmp->info = added item;

tmp->1ink=NULL;

if (front==NULL) /*If Queue is empty*/
front=tmp;

else

rear->link=tmp;

rear=tmp;

}1/*End of insert()*/

del ()

{

struct node *tmp;
if (front == NULL)
printf ("Queue Underflow\n");
else
{
tmp=front;
printf ("Deleted element is sd\n", tmp->info) ;
front=front->link;
free (tmp) ;
}

}1/*End of del()*/

display ()

{

struct node *ptr;
ptr = front;
if (front == NULL)
printf ("Queue is empty\n");
else
{
printf ("Queue elements :\n");
while (ptr != NULL)
{
printf("sd ",ptr->info);
ptr = ptr->1link;
}
printf ("\n");
}/*End of else*/

}/*End of display()*/

 stackand Queue

Data Structure Using C I— @ = stackand Queue

11. Write a C program for implementation of dynamic queue. 1

Sqlutton . [Oct.2014 - 4M
##include<stdio.h>

#include<malloc.h>
typedef struct node // structure to represent Queue
node

{

int info;

}*front=NULL, *rear=NULL;
main ()
{

int choice;

while (1)

{
printf("1.Insert\n");
printf("2.Delete\n");
printf("3.Display\n") ;
printcf("4.Quit\n");

printf ("Enter your choice : ");
scanf ("%d", &choice) ;
switch (choice)
{
case 1:
insert () ;
break;
case 2:
del () ;
break;
case 3:
display () ;
break;
case 4:
exit (1) ;
default:
printf ("Wrong choice\n");
}/*End of switch*/
}/*End of while*/
}/*End of main () */
insert ()

{

struct node *tmp;

int added item;

tmp = (struct node *)malloc(sizeof(struct node)) ;
printf ("Input the element for adding in gueue : ") ;
scanf ("%d", &added_item) ;

tmp->info = added_item;

Data Structure Using G * Stack and Queus

tmp->1ink=NULL;

if (front==NULL) /*If Queue is empty*/
front=tmp;
else

rear->link=tmp;
rear=tmp;
}/*End of insert()*/

del ()
{
struct node *tmp;
if (front == NULL)
printf ("Queue Underflow\n");
else
{

tmp=front;
printf ("Deleted element is %d\n",tmp->info);
front=front->link; :
free(tmp) ;
}
}/*End of del ()*/
display ()
{
struct node *ptr;
ptr = front;
if (front == NULL)
printf ("Queue is empty\n");
else
{ .
printf ("Queue elements :\n");
while (ptxr != NULL)
{
printf("%d ",ptr->info);
ptr = ptr->link;
}
printf ("\n");
}/*End of else*/
}1/*End of display{()*/

£k

12. Write a ‘C’ program for implementation of circular : -
- Oct.14,10, Apr.10 - 4M

queue.

Solution

#include<stdio.h>

#include<process.h>

#define QUEUE_SIZE 5

/* Function to check gqueue overflow */
int gfull(int count)

{

Data Structure UsingC S stack and Quele

retrun (count == QUEUE_SIZE) ? 1:0;
}
/* Function to check gueue underflow */
int gempty (int count)
{
return(count == 0) ? 1: 0;
}
/* Function to insert an item at the read end*?
void insert rear (int item, int gll, int *r, int *count)

{
if (gfull (*count))
{
printf (“\n Overflow of Queue”);
return;
}
*r = (*r + 1) % QUEUE_STZE;
gl*r] = item;
*count += 1;
}

/* Function to delete an item from the front end of queue*/

void delete front(int gfl, int *f, int *count)
{
if (gempty (*count))
{
printf(”Underflow of Queue”);
return; k

printf (#\n The deleted element is %d\n”, ql*fl);
*f= (*f+1) % QUEUE SIZE;
*count -= 1;
}
/* Function to display the contents of the queue */
void display (int gl), int f, int count)
{
int 1,73
if (gempty (count))
{
printf(”\n Q is Empty “);
return;

printf (“\n Contents of Queue *);
i=f;

for(j=1;j<=count;j++)

Data Structure Using -5
{
printf (“\n%d”, qlil):
i = (i+1) % QUEUE_SIZE;

}

void main ()

{
int choice,item,f,r,count,ql20];
f = 0;
r = -1;
count = 0;
fox (;;)
{
printf(”\n 1 for Imnsert”);
printf(“\n 2 for Delete”);
printf(“\n 3 for Display”);
printf(“\n Enter the Choice”);
scanf (“%d”, &choice);
switch{(choice)
{
case 1:
printf(“\n Enter the Item to be Inserted "),
scanf (“%d”, &item);
insert rear (item, g, &r, &count);
break;
case 2:
printf(“\n Enter the Item to be Inserted “);
scanf (#%d”, &item);
delete_front (g, &f, &count) ;
break;
case 3:
display (g, £, count);
break;
default:
exit (0) ;
}
}
}

13. Write a function which compares the contents of two

Qct.2014- 4M . stacks and display message accordingly.

Solution

#include<stdio.h>
#include<conio.h>
void checkstack(stack *3S,;,stack *S5;)
{
while(!isempty (S;) &&!isempty (S;,)
{
if(item[S,;—>top] == item[S,—>topl)
{
pop(Sy);
pop (8y3)
}
else

{
printf(“stack does not equal”);
return 0;

if(isempty (S;)&& isempty (S3))
{
printf (“both stacks are equal”);
}
else
printf (“stack does not equal”);
}
int isempty{stack *8S3)
{
if(s—>top==-1)
return 1;
return 0;
}
char pop(stack *3)
{
char ch;
ch = S—»item[S—topl;

S—>top==;
}return ch;

 Stackand Queue

Data Structure UsingC . -

[Oct.15.10.Apr.11,10 — 2M]
[Oct.14.Apr.15.10 — 2M]
[Oct.2012,Apr.11 — 2M]
[Oct.2012 — 2M]
[Apr.2012— 2M]

[Apr.2012 - 2M]
[Oct.2011 — 2M]
[Oct.2011 - 2M]
[Oct.2010 — 2M]
[Oct.2009 - 2M]
[Apr.2009 — 2M]

[Oct.2015 — 4M]

[Oct.2015 — 4M]
[Apr.2015 — 4M]
[Apr.2015 — 4M]

[Oct.2014 — 4M]

[Oct.2014 — 4M]
[Oct.2014 - 4M]

[Oct.14,10.Apr.10 — 4M]
[Oct.14.12 — 4M]

5! PU Questions

. stackand Queue

R N e

What is Priority queue?

What are the applications of queue?

What are the Application of Stack?

What is Circular queue? How it is represented.

What is Queue? State various operations performed on a
Queue.

Define: Circular Queue

What is Recursion?

State different types of Queue.

What is a Stack? Discuss Operations Performed on Stack.
Explain different operations performed on a Stack.

What is Circular Queue?

o

Convert given infix expression to postfix expression:
(A-B)/C*"D*E+(F-Q)
What is queue? Explain its operations in detail.

Write a function which compares the contents of two queues
and display message accordingly.

Write an algorithm to convert given infix expression to prefix
expression.

What is stack? Explain its operations in details.
Write a C program for implementation of dynamic queue.

Write a function which compares the contents of two stacks and
display message accordingly.

Write a “C” program for implementation of Circular queue.

Write an algorithm to convert Infix Expression to Postfix
Expression.

PataSiucue UsingC - ' Stackand Queue
10. Explain selection sort technique with an example. [Oct.2012 - 4M]

i. A+B*C/D ii. A+B+C+D
11. Write a ‘C’ Program for Dynamic Implementation of Queue. [Oct-2012 - 4M]

12. Convert the following Infix Expression into Prefix [Apr.2012-—4M|
Expression: i. (A+B)/)CxD-E ii. A-(B+CD)AE ‘
13. Write a ‘C’ program for Dynamic Implementation of stack. [Apr.2012 — 4M]

14. What is Priority Queue? Explain in short. [Apr.2012 - 4M]

15. Write a program to accept size of queue and add elements in the [Oct.2011 — 4M)
queue one by one from the user till the queue is filled.

16. Evaluate the following postfix expression using a Stack: AB/CD [Oct.2011 - 4M]
*+A=6,B=2,C=3,D=4

17. Write an algorithm for prefix to infix conversion of an expression. Oct.2011 — 4

18. What is stack? Discuss various applications of stack. [Oct.2011 — 4M]

19. Convert the following infix expressions into postfix. [Oct.2011 — 4M]
i. (A+B)*C ii. (A+B) *(C+D)

'20. Write a function for adding and deleting elements from stack. [Apr.2011 - 4M]

21. Explain algorithm to convert infix expression to its equivalent [Apr.11.0ct.10 — 4M]
postfix expression.

22. Explain Dynamic Representation of Stack. [Apr.2011 — 4M]
23. Write a program to reverse a string using Stack. [Apr.2011 — 4M]
24. Explain Queue with example. [Apr.2011 — 4M]

25. Explain algorithm to convert infix expression to its equivalent [Oct.2010 — 4M]
postfix expression.

26. Explain Dynamic Representation of Stack. [Oct.2010 — 4M)
27. Write a program to reverse a string using Stack. [Oct.2010 — 4M]
28. Convert the following infix to prefix expression:

i. A+B*C/D ii. A+B+C+D

[Oct.2010 — 4M]

Data Structure UsingG =

[Oct.2010 — 4M]

[Apr.2010 - 4M]

[Apr.2010 — 4M]

[Apr.2010 - 4M]

[Apr.2010 — 4M]

[Oct.2009 — 4M]
[Oct.2009 — 4M]

[Oct.2009 ~ 4M]
[Oct.2009 — 4M]

[Oct.2009 —~ 4M]

29.

30.

31.

32.
33.
34.
35.

36.
37.

38.

. stackand Queue

Convert the following Infix Expression into Postfix
Expression. A* (B + C A D)—E/F * (G + D).

Explain algorithm to convert infix expression to its equivalent
postfix expression.

Evaluate the following postfix expression: 4, 5, 4, 2, A, +, *,

2,2,A,9,3,1, %, —

Convert the following infix expression into postfix expression:
A *(B+C AD)—EfF *(G+D)

Write a ‘C’ program to reverse given string using stack.

Explain algorithm to evaluate postfix expression.

Convert following infix expressions into postfix.

a. A+B=*C b. A+B+C

Explain Static and Dynamic Representation of Stack.

Write a program to accept size of stack and add elements onto
the stack one by one which are accepted from user until stack
is full.

What is Queue? What are the various Applications of Queue?
How Queue is differ from Stack?

C?@
VISION

Chapter 5
TREES

M&%thmﬁ&i&)dlk2?SLKE,,T«{%S5%&&L?WW&W&&%%¢£%WMZ§%%W%MMKW%MWW%&M%&X&%&M%&%WWm%wm%ﬁi%%%m&f‘

2

. Apr.15 Oct.14 - 2M
1. Introduction What is use of tree? How

it is differ from linked list?

A tree is a data structure which represents a hierarchical tree structure with a set of linked nodes. It is

an acyclic connected graph where each node is connected to a set of zero or more children nodes,
and also it can have at most one parent node.

There are many different ways to represent trees, but in common representations either it represents
the nodes as records allocated memory dynamically with pointers to their children, their parents

(or both), or as items in an array, with relationships between them according to their positions in the
array.

PR ” .

2. Tree Terminolbgy

Definition of a Tree

" A tree is a finite set of nodes with one specially designated node called the root and the remaining
nodes are partitioned into n > =0 disjoint sets Ty and T, where each of those sets is a tree. Ty to T,
are called the sub trees of the root.

Example

(&)
® © ©

(e) ® ©
()

Tree

In this example, A,B,C,D,E,F,G and H form a set of nodes with A as the root. The remaining node:
are partitioned into three sets (trees) with B,C and D as their respective roots.

Null Tree

A tree with no nodes is a Null Tree.

Node

A node of a tree is an item of information along with the branches to other nodes. The tree show
has 8 nodes.

Leaf Node

A leaf node is a terminal node of a tree. It does not have any nodes connected to it. All other node
are called non-leaf nodes, or internal nodes.

H, F, G and D are leaf nodes.

Data Structure Using G = SRS

Degree of a Node
The number of subtrees of a node is called its degree.

The degree of A is 3, Bis 2 and D is 0. The degree of leaf nodes is zero.

Degree of the Tree

Apr.2011 - 2M

The degree of a tree is the maximum degree of the nodes in the tree. v , o
Define: Degree of a Tree

The degree of the shown tree is 3.

_ Parent Node

" A parent node is a node having other nodes connected to it. These nodes are called the children of
that node.

The root is the parent of all its subtrees. A,B, and C are parent nodes.

Siblings
Children of the same parent are called siblings.

B,C and D are siblings. E and F are siblings.

Descendents

The descendents of a node are all those nodes which are reachable from that node.

Example 2
E, F and H are descendents of B. Apr.15,0ct.14 - 2M
What is Ancestor of
Node? '
Ancestors

The ancestors of a node are all the nodes along the path from the root to that node.
Examples |

B and A are ancestors of E.

Level of a node

This indicates the position of a node in the hierarchy. The level of any node = level of its parent +1.
The root is considered to be at level 0.

Examples

B, C and D are the level 1. H is at level 3.

e
Y

Height or Depth of a Tree

- The maximum level of any node in the tree is the height or depth of

Xor.2012 - oM
Apr = the tree.

Define the following

terms: Helghtofa’rree 4}7'5' The given tree has a height = 3. This equals the length of the longest

path from the root to any leaf.

Forest

A forest is a set of n > = 0 disjoint trees i.e. if we remove the root, we geta forest of trees.

() g ©
(® ©
®
0

(i) (iii)

Example

Forest

These three trees form the forest if A is removed.

3.) Binary Trees

Oct2011-2M

; A binary tree is a finite set of nodes, which is empty or partitioned
into three sets; one which is the root and the other two are binary
Define: Binary Tree trees called its left and right subtrees.

It is a tree where every node can have at the most two branches
(children).

Binary Tree

Strictly Binary Tree

A strictly binary tree is a binary tree where all non-leaf nodes have two branches.

(M)
(8) ©

® &
® ©

Strictly Binary Tree

Complete Binary Tree

A complete binary tree is a strictly binary tree with all its leaf nodes at the same level, d (d is the
height or depth of the tree).

Complete Binary Tree

The maximum number of nodes on level i is 2.
The complete binary tree with a total of d levels (from 0 to d—1) contains

d-1
number of nodes = Y, 2i=29_1
i=0

Almost complete binary tree

A binary tree with d levels is almost complete if levels 0 to d-2 are full and the last level i.e. level d
is partially filled from left to right.

(A)
0Oct.2009 — 2M (8) (©)

Define Almost Complet
Binar;; ’I'rrene‘:S e Q e e @
»H OO

Almost Complete Binary Tree

Skewed Binary Tree

The branches of this tree have either only left branches or only right branches. Accordingly the tree
is called left skewed or right skewed tree.

Left skewed binary tree Right skewed binary tree

Binary Search Tree

A binary search tree is a binary tree in which the nodes are arranged according to their values. The
left node has a value less than its parent and the right node has a value greater than the parent node,
i e. all nodes in the left subtree have values less than the root and those in the right subtree have

values greater than the root.

Binary Search Tree

4. Representation of Binary Trees

A binary tree can be represented using

1. Sequential Representation
2. Linked Representation

1. Sequential Representation: In this method, we will number each node of the tree starting
from the root. Nodes on the same level will be numbered left to right. Since a binary tree
with total ‘d’ levels will have maximum of 2 —1 nodes, we can use an array of
size 29 —1 to represent the binary tree.

Thus, we can use static allocation method to represent a binary tree.

Example

Level 0

Level 1

Level 2

Complete Binary Tree

Here, the number of levels is 3. .. we need an array of size 2°~1=17 elements.

The tree representation will be:

BT AI/B|C|D{E]|F |G

0 1 2 3 4 5 6 7 8 8§ 10
BT |A|B|CI|ID|E|F|GIH!II |JIK

Almost Complete Binary Tree

This representation allows random access to any node as shown
i. Thei™ node is at location i where
(0<i<n)

. The parent of node i is at location (i—1)/2 — (i=0 is the root and has no parent)

Example

parent of J (node 9) = (9-1)/2
= 8/2=4

i.e. E.

iii. Left child of a node i is present at position 2i + 1 if 2i + 1<n

If2i +1 > =n, the node i does not have a left child.

Example

Left child of B (node 1) = 2 x1+1
=3
=D

Left child of F(node 5) = 2x5+1

= 10+1

= 11

= n
Thus, F does not have a left child.

iv. Right child of a node i is present at position 2i + 2 if 2i + 2 <n. If 2i + 2 > = n then
node i does not have a right child.

Example

Right child of B (node 1) = 2 x1+2
=2+2=4

Since 4 <7, the node E is the right child.

Right child of G (node 6) = 2 x6+2 =14>n

Thus G does not have a right child.

Data Structure UsingC = ¢ @ — , . ‘ Trees

Note: The above formulae will work only for almost complete binary trees. Any binary tree
can be converted to almost complete binary tree by showing dummy nodes as shown.

0 1 2 3 4 5 6 7 8 9 10
BT AlB|C|{DIE {FiG

Representation of Binary Tree

Disadvantages of Sequential representation

i. Since we are using arrays, there is a limitation on its size ie. we cannot store
information of more nodes than the specified array size.

ii. If the tree is not an almost complete binary tree, many array positions will be unutilized.
Example

Consider the skewed tree and its representation

Here, number of levels d = 4
Array size=24-1 =15
6 1 2 3 4 5 6 7 8 9 10 11 12 13 14
B C ‘ D

Representation of skewed tree

Thus, only 4 positions are occupied and 11 are wasted.

iii. Nodes cannot be inserted or deleted. Hence, the linked representation is preferred.

Data Structure Using© = - >0

2.

Linked Representation: This is a more flexible representation and uses the dynamic memory
allocation. Since each node represents information and contains at the most two children, we
can define a node structure as follows.

struct treenode

{

struct treenode *left;

int data;

struct treenode *right;
};
typedef struct treenode *TREEPTR;
TREEPTR root;

We shall also be using the definition

#define NODEALLOC (struct treenode *)malloc (sizeof (struct treenode))

left data right
N

v N

Example 1
Tree Linked Representation
(A) A
B (© NULL| B |NULL NULL | C |NULL
Example 2

(A) A | NULL

G /

NULL| C INULL

[vs]

NULL

Linked representation

Data Structure Using © = e . @ . Trees

5. Operations on Binary Tree

Following operations can be performed in the binary tree,

1. Create

2 Insert a value

3 Search for a given value

4. Delete a value

5 Traverse all the nodes (Preorder, Inorder and Postorder).

5.1 Creation of Binary Tree

A binary tree can be created by declaring a structure and creating pointer variables of it. The binary
tree created must be empty initially and new nodes can be created by allocating memory dynamically
to them. The node created using dynamic memory allocation will be having its own memory with
size 6 i.e. 2 bytes for integer value stored at node, 2 bytes to store link of left child and remaining 2
bytes to store link of right child. Once the node is created its left link and right link should be kept
NULL.

struct node
{
int value;
struct node *left;
struct node *right;
b
struct node *create()
{
struct node *newNode;
newNode= (struct node *)mallcc{sizeof (struct node));
newNode->value= <value> /* User Input: */
newNode->1left=NULL;
newNode->right=NULL;
return (newNode) ;

}

The create function is defined to create new nodes (newNode) with dynamic memory allocation and
having its left and right links NULL and value to the node can be provided according to user choice.

Data Structure UsingC

5.2 Insertion

A binary tree is constructed by the repeated insertion of new nodes into a binary tree structure.
Insertion must maintain the order of the tree such that values of the left node of a given node must be
less than that node, and value of right node must be greater.

Inserting a node into a tree is actually two step operations.

First, the tree must be searched to find the position where the node is to be inserted. Second, on the
completion of the search, the node is inserted at the specified position into the tree.

Assuming that duplicate entries are not allowed in the tree, two cases must be considered when
constructing a binary tree.

1. Inserting into an-empty tree.
After insertion of 4

®

In this case, the node inserted into the tree is considered the root node.

Before insertion of 4

2. Inserting into a non-empty tree.

Before insertion of 5 After insertion of 5

The tree must be searched to determine where the node is to be inserted.

Algorithm
1. Compare the value of new node first to the root node of the tree.

ii. If the value of the new node is less than the value of the root node.

Data Structure Using G+ =

if the left subtree is empty insert new node as the left child of the root node
else, the search continues down the left subtree.
iit. If the value of the new node is greater than the value of the root node.
if the right subtree is empty, insert new node as the right leaf of the root node

else, the search process continues down the right subtree.

iv. If the insertion node already exists in the tree, the terminate the procedure as it cannot insert
duplicate node.

void insert(struct node *root, int child)
{
struct node *tempNode;
if (root==NULL))
{
root = newNode;
}
else
{
if (child<root->value)
{
if (root->left==NULL)
root->left=newNode;
else
ingsert (root->left,child)
}
if (child>root->value)
{
if (root->right==NULL)
root->right=newNode;
else
insert (root->right,child)

}
if (child==root->value)

{ printf (“Duplicate Node...”)}; }
}

5.3 Deletion

The algorithm to delete an arbitrary node from a binary tree is deceptively complex, as there are
many special cases. The algorithm used for the delete function splits it into two separate operations,

Data Structure Using C R Trees

searching and deletion. Once the node which is to be deleted has been determined by the searching
algorithm, it can be deleted from the tree. The algorithm must ensure that when the node is deleted
from the tree, the ordering of the binary tree should be maintained.

Special Cases that have to be considered

1. The node to be deleted has no children.
In this case the node may simply be deleted from the tree.

Before deletion of 2 After deletion of 2

(2)—togero (1) 0

be deleted
2. The node has one child.

The child node is appended to its grandparent.(The parent of the node to be deleted).

Before deletion of 2 After deletion of 2

Node to
be deleted

3. The node to be deleted has two children.

This case is much more complex than the previous two, because the order of the binary tree
must be maintained.

In this algorithm it is important which node should be used in place of the node to be deleted.

i. Use the inorder successor from right subtree of the node to be deleted.

Before deletion of 5 After deletion of 5

Node o be
deleted

Inorder
successor

ii. Else if no right subtree exists replace the node to be deleted with its left child.

Before deletion of 5 After deletion of 5

Node to be
deleted

void delete(struct node *curr)

{
/* Node with single child*/
if ((curr->left == NULL && curr->right != NULL)|| (curr—left != NULL&&
curr->right == NULL))

{

if (curr->left == NULL && curr->right != NULL)
{ if(parent->left == curr)
{

parent->left = curr->right;
delete curr;

}

else

{

parent->right = curr->right;
delete curr;

Data Stchtuyg,Using c ,, - e Trees

3
else / * left child present, no right child */
{
if (parent->left == curr)
{

parent->left = curr->left;
delete curr;
else
{
parent->right = curr->left;
delete curr;

}

}
return;
}
/* A leaf node */
if(curr->left == NULL && curr->right == NULL)
{

if (parent->left == curr)

parent->left = NULL;
else

parent->right = NULL;
delete curr;
return;
}
/* Node with 2 children */
/* replace node with smallest value in right subtree */
if (curr->left != NULL && curr->right != NULL)
{
tree node* chkr;
chkr = curr->right;
if ({chkr->left == NULL) && {(chkr->right == NULL))
{
curr = chkr;
delete chkr;
curr->right = NULL;
}
else /* right child has children*/
q ;
/* if the node's right child has a left child Move all the way down
left to locate smallest element*/
if ((curr->right) ->left != NULL)
{
struct node* lcurr;
struct node* lcurrp;
lcurrp = curr->right;

lcurr = (curr->right) ->left;
while(lcurr->left != NULL)
{
lcurrp = lcurr;
lcurr = lcurr->left;

}

Data Structure Using C . @ S e

curr->key = lcurr->key;
delete lcurr;
lcurrp->left = NULL;

else
{
struct* tmp;
tmp = curr->right;
curr->key = tmp->key;
curr->right = tmp->right;
delete tmp;
}
}
return;
}
}

6. Traversing a Binary Tree

Traversing a binary tree means to do a print out of all the data elements in the tree in a specific order.

According to this order there are three types of traversals.
—{3
/Oct.2012 - 2M

State different types of
traversal technique of
tree.

Oct.2011 — 4M

What are the different
types of Tree Traversal
methods? Explain any
one with suitable

All traversal algorithms are described with following diagram.

éxample.
Binary Tree
Oct.2010 — 4M
hese three types are as follows: Discuss different Tree
Pre Order Traversal Qaversai Methods. /

In Order Traversal
i. Post Order Traversal

==

6.1 Pre Order Traversal

A pre order traversal prints the contents of a sorted tree, in pre order. In other words, the contents of
the root node are printed first, followed by left subtree and finally the right subtree. So in an In order
traversal the result is in the following string: FCAD JHIK.

Pre order Traversal

i Do operation on root of the tree
ii. Traverse left subtree

iii. Traverse right subtree

void preorder (struct node *root)

{
if (root!=NULL)

{
printf ("%d", root—val) ;
preorder (root—left);

preorder (root—right) ;

6.2 In Order Traversal

An in order traversal prints the contents of a sorted tree, in order. In other words, the lowest in valu
first, and then increasing in value as it traverses the tree. The order of a traversal would be 'a’ to 'Z' |
the tree uses strings or characters, and would be increasing numerically from 0 if the tree contain

numerical values. So, as shown in figure, an in order traversal would result in the following string:
ACDFHIJK

In order Traversal

1. Traverse left subtree
ii. Do operation on root of the tree
iii. Traverse right subtree

void inorder (struct node *root)

{
if (root!=NULL)
{
inorder (root->left) ;
printf (*%d", root->val);
inorder (root->right) ;
}
}

6.3 Post Order Traversal

A post order traversal prints the contents of a sorted tree, in post order. In other words, the contents
of the left subtree are printed first, followed by right subtree and finally the root node. So as shown
in figure, an in order traversal would result in the following string: AD CIHKJF.

Post order Traversal

i Traverse left subtree
ii. Traverse right subtree
iii. Do operation on root of the tree

void postorder (struct node *root)
{
if (root!=NULL)
{
postorder {(root->left);
postorder (root->right);
‘printf ("%d", root->val) ;

6.4 Iterative Traversing

All the above recursive methods are implemented using recursive function. As we know recursive
functions are executed by using stack. To execute above traversing methods stack space,
proportional to the depth of the tree, is required. One of the methods to implement iterative
traversing is to use stack, but to store intermediate nodes at different level instead of using it for
recursion. Recursive traversal may be converted into an iterative as follows.

Iterative Preorder Traversal

Algorithm

I. Push the root node into stack.

. Consider the top item as current node from stack.
iii. Print the value of current node.

iv. Ifleft child of current node is not NULL.

a. Push the left child of current node into stack.
else
If right child of current node is not NULL.

b. Push the right child of current node into stack.
else

c. Pop the topmost node from stack.

d. Repeat step no. 2 till stack gets empty.

void Preorder (rootNode)
{
nodeStack.push (rootNode)
while (!nodeStack.empty ())
{
currNode = nodeStack.peek() /*peek at top item*/
printf (”%d”, currNode->value)
if ((currNode->left) != NULL)
nodeStack.push (currNode->left)/*Put the next level of calls on stack *x/
else
if ((currNode->right) != NULL)
nodeStack.push (currNode->right)
else
nodeStack.pop() /* Only do this if we didn't push anything on stack */

Push the root node into stack.
Consider the top item as current node from stack.

Data Structure Using G-

iii.

If left child of current node is not NULL.

a.

d.

c.

Push the left child of current node into stack.
else

* If right child of current node is not NULL.
Push the right child of current node into stack.
else

Pop the topmost node from stack.
Print the value of current node.

Repeat step no. 2 till stack gets empty.

void Inorder (rootNode)

{

nodeStack.push (rootNode)
while (lnodeStack.empty ())

{

currNode = nodeStack.peek () /*peek at top item*/

if ((currNode->left) != NULL)

nodeStack.push(currNode—>left)/*Put the next level of

callg on stack */

else

if ((currNode->right) != NULL)
nodeStack .push (currNode->right)
else

{

nodeStack.pop() /* Only do this if we didn't push

anything on stack */

printf(“%d",cuIINode->value);

Iterative Post Order Traversal

Algorithm

1.

ii.

Push the root node into stack.

Consider the top item as current node from stack.

1ii. If left child of current node is not NULL

a. Push the left child of current node into stack.

else
If right child of current node is not NULL.

b. Push the right child of current node into stack.
else

c. Print the value of current node.

d. Pop the topmost node from stack.

e. Repeat step no. 2 till stack gets empty.

void Postorder (rootNode)
{
nodeStack.push (rootNode)
while (!nodeStack.empty())
{
currNode = nddestack.peek()/*peek at top item*/
if ((currNode->1left) != NULL)
nodeStack.push (currNode->left) /*Put the next level of calls on stack */
else
if ({(currNode->right) != NULL)
nodeStack.push (currNode->right)
else

{

printf (“%d”, currNode->value)

nodeStack.pop() /*Only do this if we didn't push anything stack */

Data Structure Using € =,

7. Binary Search

The binary search is the standard method for searching the required element through a sorted array.
It is much more efficient than a linear search, where we sequentially go through the array elements
until the target is found. Binary search requires that the elements in an array should be in order.

The binary search repeatedly divides the array in two parts and each time restricting the search to the
half part that contains the target element.

Here the binary search algorithm is implemented using array which is having static memory
allocation. The binary search algorithm can also be implemented using data structures with dynamic
storage and allows searching to be done efficiently. A linked list structure is not efficient when
searching for a specific item as the node can only be accessed sequentially.

7.1 Binary Trees and Binary Search Trees

1
Binary search tree is a special kind of tree, which is ideal for storing
Apr.2012 - 2M : : . ideall :
: . data for efficient searching. The binary search tree is a hierarchical
What is a Binary Search
Tree? ; structure in which data is accessed similar to a binary search

algorithm.

A binary search tree is itself a special kind of binary tree. A binary tree is a tree which is either
empty or consists of a node called the root, together with two children called the left subtree and the
right subtree of the root. Each of these children is itself a binary tree.

A binary search tree satisfies the following additional conditions:

i. Each element has a key value which is used to order the elements.

i, The keys of all the elements in the left subtree of the root are less than the key in the root.
ili. The key in the root is less than all the keys in the right subtree.

iv. The left and right subtrees of the root are again having a structure of search trees.

V. The tree must be searched to determine where the node is present having required value to be
searched.

Data Structure Using

Algorithm

. Compare the given key value first to the root node of the tree.

Oct2011-4M
Write an algorithm for
Binary Search Method.

ii. Ifthe value of the key is less than the value of the root node

if the left subtree is not empty, the search continues down the
left subtree.

else display the message of not found and quit.

iii. If the value of the key is greater than the value of the root
node. '

if the right subtree is not empty, search process continues down the right subtree.
else display the message of not found and quit.

iv. Ifthe key value not exists in the tree, then terminate the procedure.

To search 5

struct Node * BSearch(Node *root, int key)

{ while(root '= NULL)

{ if(root->data == key)
return n;
parent=root;
if(root->data > key)
root = root->left;
else
root = root->right;

}
return NULL;

As explained in algorithm, the function BSearch is defined to search given key value in a Binary
Search Tree. Firstly, the tree is checked whether it is’empty or not. If tree is not empty, the key is
compared with the value at root node. If it is less than value at root, the left child is selected and it is
considered as root else if it is greater, the right child is considered as root and same process is
applied. If key value is exactly equal to root or some other node, the node will be returned by the
function else NULL value will be returned as element is not found.

/* Program to Implement Binary Search Tree*/
#include<stdio.h>
#include<conio.h>
struct node
{
struct node*left;
int value;
struct node*right;
s
struct node *root, *parent, *newNode;

/* Define the functions for Create, Insert, BSearch, Delete Preorder,
Inorder and Postorder functions discussed above */

void main ()
{

int ch, a;
do

{

- clrscr () ;
printf("1.Insert\n2.séarch\n3.Delete\n4.Traverse\nS.Exit\n");
printf ("\nEnter your choice:-");

" scanf ("&d", &ch) ;
if (ch==1)

{
newNode=Create () ;
Insert (root,newNode->value) ;
}
if (ch==2)
{
printf (“Enter value to be searched:-*);
scanf (#%d”, &a) ;
newNode=BSearch(root,a) ;
if (newNode==NULL)
printf (“Element not found”);
else

Data Structure Using G« ¢ 5.27

printf (“Element Found..”);

printf (“Enter value to be searched:-")};
scanf (“%$d”, &a) ;
newNode=BSearch(root,a) ;
if (newNode==NULL)
printf (“Element not found”);
else
Delete (newNode) ;
}

if (ch==4)

{
printf("1.Preorder\n2.Inorder\n3.Postorder\n“);
printf ("\nEnter your choice:-");
scanf ("%d", &a) ;
if (a==1)

Preorder (root) ;
if (a==2)

Inorder (root) ;
if (a==3)

Postorder (root) ;

} while(ch<5);

8. AVL Trees

AVL trees are self-adjusting, height-balanced binary search trees and are named after the inventors:
Adelson-Velskii and Landis. An AVL tree is a special type of binary tree that is always ‘partially’
balanced. The criteria that is used to determine the ‘balanced-ness’ is the difference between the
heights of subtrees of a root in the tree.

The ‘height’ of tree is the ‘number of levels’ in the tree. Generally, the height of a tree is defined as
follows:

1. The height of a tree with no elements is 0
ii. The height of a tree with 1 element is 1
iii. The height of a tree with > 1 element is equal to 1 + the height of its tallest subtree.

An AVL tree is a binary tree in which the difference between the height of the right and left subtrees
(or the root node) is never more than one. The height of a binary tree is the maximum path length
from the root to a leaf. A single-node binary tree has height 0, and an empty binary tree has
height -1. As another example, the following binary tree has height 3.

As discussed above, an AVL tree is a binary search tree in which
every node is height balanced, that is, the difference in the heights
of its two subtrees is at most 1. The balance factor of a node can be
calculated as the height of its right subtree minus the height of its
left subtree. Hence in AVL tree each node has a balance factor of -1,
0, or +1. Note that a balance factor of —1 means that the
left-subtree is heavy, a balance factor of +1 means that the right-
subtree is heavy and a balance factor of 0 means that both left-
subtree and right-subtree are having same height.

Oct1412-2M
What is Balance Factor?
How it is calculated?

For example, in the following AVL tree, node.

That the root node with balance factor +1 has a right subtree of height 1 more than the height of the
left subtree. (The balance factors are shown at the top of each node.)

A node with any other balance factor is considered unbalanced and requires rebalancing the tree. The
balance factor is either stored directly at each node or computed from the heights of the subtrees.
Whenever we insert or delete an item, the AVL tree can be ‘violated’. We must then restore it by
performing a set of manipulations called ‘rotations’ on the tree. These rotations are having two types:
single rotations and double rotations

In an AVL tree, the Balance Factor (BF) of a node means the difference between the heights of the
left and right subtrees of the node must be —1, 0 and 1. If any node has a balance factor other than
these values then the rotations are required to balance the tree.

The four rotations performed to balance a tree are

i. LL (Left to left) , | OctA5Apra2-4M |
ii. LR (Left to right) i@i‘i‘{g gﬁg:“;*épgz of
iii. RR (Right to right) example. ‘

iv. RL (Right to left)

i Left to Left Rotation (LL): This operation is required when

insertion in left subtree of left child of ancestor node T
Apr.2015 - 4M

(Unbalanced node whose BF >1) is occurred.
ii. Right Rotation (RR): A right rotation is a mirror of the left ;Irvet?; g’xgle;‘g: tﬁ:ﬁgcgg
rotation operation described above. This operation is required rotations.
when insertion in right subtree of right child of ancestor node
is occurred.

iii. Left-Right Rotation (LR): Sometimes a single left rotation is not sufficient to balance an
unbalanced tree. This operation is required when insertion of a new node in right subtree of
left child of ancestor node is occurred. In this method, RR rotation has to be applied on the
node nearest to the pivot and newly inserted node. Then LL rotation has to apply on the pivot
node.

iv. Right-Left Rotation (RL): This must be performed when attempting to balance a tree which
has a left subtree that is right heavy. In this method, LL rotation has to be applied on the node
nearest to the pivot and newly inserted node. Then RR rotation has to apply on the pivot node.

Consider the following examples for all rotations:
LL

RR

Solved Examples

1. Build on AVL Tree for the following data:
Mon, SUN, Thur, Fri, Sat, Wed, Tue.

Solution

-~ Oct2012 - 4M

1. | Mon

No rebalancing

needed
22. Sun @
- v No rebalancing

needed

33. | Thur ’ @ | |
No rebalancing

needed
@ After applying RR

rotation

44. Fri @
No rebalancing
needed

55 Sat , @

No rebalancing
needed

66. Wed
No rebalancing
needed

77. | Tue
Apply RL rotation.
Apply LL on‘Wed.

g

After LL rotation

(sun)

CYENGD

GO CO RN,
(e

After RR rotation

2. Give the Preorder, Inorder and Postorder Traversal
of the following trees:

0ct.2012 - 4M

Data Structure Using G- =+

ii.

Solution
Consider root is denoted by N, left subtree as L, right subtree as R.

i Preorder Traversal (NLR)
a. Visit the root.

b. Traverse the left subtree of root in preorder.

c. Traverse the right subtree of root in preorder.
ii. Inorder Traversal (LNR)

a. Traverse the left subtree of root in inorder.

b. Visit the root.

c. Traverse the right subtree of root in inorder.
iii. Postorder Traversal (LRN)

a. Traverse the left subtree of root in postorder.

b. Traverse the right subtree of root in postorder.

c. Visit the root.

According to the above rules,

Consider the first given tree

i. Preorder Traversal: 1,2, 4,5, 7,3, 6

ii. Inorder Traversal: 4,2,5,7,1,6,3

iii. Postorder Traversal: 4, 7, 5,2, 6, 3, 1
Consider the second given tree,

1. Preorder Traversal: 1,2, 4,5, 6,3, 7, 8
Inorder Traversal: 4, 2,5,6,1,7,3, 8
iii. Postorder Traversal: 4, 6, 5,2, 7, 8, 3, 1

™)

o o

Write the recursive functions of Pre-order and Post-order
Traversal in a BST.

Solution

In preorder traversal method, sequence of traversing the nodes is
visit the root value first, then visit left and Jastly visit right child.

Tn case of postorder traversal method, sequence of traversing the nodes is visit the left child first,
then visit right child and lastly visit the root value.

Preorder(NLR) and Postorder(LRN) traversal methods using recursive functions for BST are as
follows,

void preorder (struct node *ptr) /* it follows the NLR (Root -
>Left->Right)*/
{
if (root==NULL)
{
printf("Tree is empty");
return;
}
if (ptr!=NULL)
{
printf("sd ",ptr->info);
preorder (ptr->1child) ;
preorder (ptr->rchild);
} .
}/*End of preorder ()*/
void postorder (struct node *ptr) /* it follows the LRN (Left-
>Right->Root) */
{
if (root==NULL)
{
printf("Tree is enpty");
return;
}
if (ptr!=NULL)
{
inorder (ptr->1child) ;
inorder (ptr->xchild) ;
printf("sd ",ptr->info);
}
}/*End of postorder () */

4. -Write a program to construct a Binary Search Tree and
Traverse using Inorder and Preorder Traversal.

Solution

#include<stdio.h>
#include<malloc.h>

struct node /* structure of node in binary search tree * /

int info;
struct node *1child;
struct node *rchild;
} *root;
main () /*main function */

{

int choice,num;

root=NULL;

while (1)

{
printf ("\n");
printf ("1.Create\n");
printf ("2.Inorder Traversal\n");
printf ("3.Preorder Traversal\n");
printf ("4.Display\n");
printf("5.Quit\n");
printf ("Enter your choice : ");
scanf ("%d", &choice) ;
switch (choice)

{
case 1: printf ("Enter the number to be inserted : ");
scanf ("%d", &num) ;
insert (num) ;
break;
case 2: inorder (root);
break;
case 3: preorder (root);
break;
case 4: display(root,1);
break; '

case 5:exit();
default: printf ("Wrong choice\n");
}/*End of switch */
}/*End of while */
}/*End of main()*/
/* find function shows the proper position of new node to insert in
tree */
find (int item, struct node **par,struct node **]oc)
{
struct node *ptr,*ptrsave;
if (root==NULL) /*tree empty*/

{
*loc=NULL;
*par=NULL;
return;

}

if (item==root->info) /*item is at root*/

Deta Siructure Using G-

{
*loc=root;
*par=NULL;
return;
}
/*Initialize ptr and ptrsavex/
if (iteminfo)
ptr=root->1lchild;
else
ptr=root->rchild;
ptrsave=root;
while (ptr!=NULL)
{
if (item==ptr->info)
{ *loc=ptr;
*par=ptrsave;
return;
}
ptrsave=ptr;
if (iteminfo)
ptr=ptr->1child;
else
ptr=ptr->rchild;
}/*End of while */
*loc=NULL; /*item not found*/
) *par=ptrsave;
}/*End of find()*/
insert(int item) /* insert function inserts new node at its position in
tree */
{
struct node *tmp, *parent,*location;
find(item, &parent, &location) ;
if (location!=NULL)
{
printf ("Item already present");.
return;
}
tmp= (struct node *)malloc(sizeof (struct node)) :
tmp->info=item;
tmp->1child=NULL;
tmp->rchild=NULL;
if (parent==NULL)
root=tmp;
else
if (item< parent->info)
parent->lchild=tmp;
else
parent->rchild=tmp;

Data Structure Using

}/*End of insert()*/
preorder (struct node *ptr) /= it follows the NLR (Root->Left->Right) */
{
if (root==NULL)
{
printf ("Tree is empty") :
return;
} .
if (ptr!=NULL)
{ ‘
printf("sd ",ptr->info);
preorder (ptr->1child) ;
precrder (ptr->rchild) ;
}
}/*End of preorder ()*/

inorder (struct node *ptr) /* it follows the LNR (Left->Root->Right) */
{ if(root==NULL)

{
printf("Tree is empty");
return;

}

if (ptr!=NULL)

{
inorder (ptr->lchild) ;
printf ("3sd ",ptr->info) ;
inorder (ptr->rchild) :

}

}/*End of inorder () */
display (struct node *ptr,int level)

{
int 1i;
if (ptr!=NULL)
{

display (ptr->rchild, level+1) ;
printf (*\n") ;
for (i = 0; i < level; i++)
printf (v "),
printf ("%d", ptr->info);
display (ptr->1child, level+1)
}/*End of if*/
}/*End of display()*/

7

5. Define Height Balance Tree. Built an AVL tree for the
following data:

Jan, Feb, Mar, Apr, May, June, July

Solution

A height-balanced tree is a data structure tree which keeps its children similar in height to within
some defined limit. For example, children of an AVL tree differ in height by at most 1.

A tree whose subtrees differ in height by no more than one and the subtrees are height-balanced, too.
An empty tree is height-balanced.

Since the given tree is a binary search tree, so insert the data according to the alphabetical position in
the tree. '

\alam

No re-balanc

needed

Feb @ No re-balancing
needed

Mar No re-balancing
needed

Apr No re-balancing
needed

May No re-balancing
needed

5.39}

June No re-balancing

needed

July No re-balancing
needed

&
©
&

6. Werite a function to count number of nodes in a given tree.
Solution ’

Function to count number of nodes in a given tree.
int count (node *t)
{
stack s;
int count = 0;
while (t!=NULL)
{
count = count +1;
s.push(t) ;
t=t—o>left;

Oct2014—-4M

}
while(!s.empty ())
{

t=s.pop () ;

t=t—>right;

while (t!=NULL)

{ count = count +1;
s.push(t) ;
t=t—oleft;

}

}
‘return(count) ;

}

7. Construct Binary Search tree for following data:
Jan, Oct, Dec, Nov, Feb, Mar, Apr, Sept, May, Jul, Jun,

Aug
Solution
i Jan
ii. Oct
1ii. Dec
iv. Nov

V. Feb

Data Structure UsingC. U s e

vi. Mar

i

Data Structure Using C

© Trees

XA AR~

10.

What is Ancestor of Node?

What is use of tree? How it is differ from linked list?
What is balance factor? How it is calculated?

State different types of Traversal Technique of Tree.
What is Balance Factor? How it is calculated?

What is a Binary Search Tree?

Define the following terms: Height of a Tree

Define Binary Tree.

Define “Degree of a Tree”.

Define Almost Complete Binary Tree.

4 Marks

Write the recursive functions to traverse a tree by using
inorder(), preorder() and postorder() traversing techniques.

Build AVL tree for the following data: FRI, MON, SAT,
WED, SUN, TUE, THUR 1.

Write a function to count the number of leaf nodes in a tree.
Write a function to display mirror image of given tree.
What is height-balanced tree? Explain LL and RR rotations.
Explain different types of AVL rotations in details.
Construct Binary Search tree for following data: Jan, Oct,
Dec, Nov, Feb, Mar, Apr, Sept, May, Jul, Jun, Aug

Write a function to count number of nodes in a given tree.

Build on AVL Tree for the following data: Mon, Sun, Thur,
Fri, Sat, Wed, Tue.

Give the Preorder, Inorder and Postorder Traversal of the
following trees:

1.

[Oct.14.Apr.15 — 2M]
[Oct.14.Apr.15 — 2M]

[Oct.14,12 - 2M]
[Oct.2012 - 2M)]
[Oct.2012 ~ 2M]

[Apr.2012- 2M]

[Apr.2012 - 2M]
[Oct.2011 — 2M]
[Apr.2011 — 2M]
[Oct.2009 — 2M]

[Oct.2015- 4M]

[Oct.2015- 4M]

[Apr.2015- 4M]
[Apr.2015— 4M]
[Apr.2015- 4M]
[Oct.14,Apr. 11— 4M]
[Oct.2014—- 4M]
[Oct.2014— 4M] -

[Oct.2012- 4M]

[Oct.2012- 4M]

[Apr.2012 — 4M]

[Apr.12,11,0ct.10 — 4M]

[Oct.2011 — 4M]
[Oct.2011 — 4M]

[Oct.2011 — 4M]
[Oct.2011 — 4M]

[Oct.2011 — 4M]
[Oct.2011 — 4M]

[Apr.2011 — 4M}
[Apr.2011 — 4M]

[Apr.2011 - 4M]

[Oct.2010 - 4M]
[Oct. 10,09 — 4M]

[Apr.2010 - 4M}
[Oct.2009 — 4M]

il.

16.

17.
18.

19.
20.
21.

22.

24,
25.

6

Write the recursive functions of Pre-order and Post-order
Traversal in a BST. ‘

Construct Binary Tree for the following data: 12,
30,6,7,25,10,15,18,33

Write an algorithm for Binary Search Method.

What are the different types of Tree Traversal methods? Explam
any one with suitable example.

Write a program to construct a Binary Search Tree and Traverse
using Inorder and Preorder Traversal.

Define Height Balance Tree. Built an AVL tree for the following
data: Jan, Feb, Mar, Apr, May, June, July <
Write a program to count Leaf and non-leaf nodes of a tree.
Construct Binary Tree for the following - data: 12,
30,6,7,25,10,15,18,33

Write a function to find height of Binary Tree.

Construct AVL Tree for the following;

Avinash, Janardan, Suresh, Prashant, Mahesh, Amar, Anup,
Sachin, Sahdev, Vijay, Dhurandhar, Nitin.

Construct a binary tree for the following data: 12, 30,6, 7, 25,
10, 15, 18,33

Discuss different Tree Traversal Methods.

Construct Binary Search Tree for the following data and give in
order, preorder and post order tree traversal: 20, 30, 10, 5, 16,
21,29,45,0,15,6

Write a C function to search element in a Binary Search Tree.
Define Height Balanced Tree. Built an AVL Tree for the
following data: Sun, Mon, Tue, Wed, Thur.

(/o
VISION

Chapter 6
GRAPHS

1. Graphs

In computer science, a graph is a kind of data structure, that consist of a set of nodes (also called
vertices) and a set of edges that establish connections between the nodes. To denote mathematically,
graph G = (V, E) consists of vertices, V, which are connected by edges, the elements of E. Formally,
V is a set (usually finite) and E is a set consisting of two subsets of V.

1.1 Definitions and Terminology

Graph
A graph G is a collection of two sets V and E. V is a finite non empty set of vertices (or nodes) and
E is a finite non empty set of edges (or arcs) connecting a pair of vertices.

An edge is represented by two adjacent vertices G is represented as G = (V, E)

Data Strcturo Using © () . Graphs
-/

Example

_—~

V,E)

V17 V2 VB’ V4}

(Vi Vo), (V,, Vi) }
(Vs Vi), (Vo Vi) }

Some examples of graphs: Graphs are two types, Undirected graph and Directed graph.

1 Types of Graphs

8 i Undirected Graph: A graph is an undirected graph if the

Apr. 2019 - 2M irs of vertices that make up the ed dered pai

State the types of pairs of vertices that make up the edges are unordered pairs.

graphs. i.e. an edge(V,, V;) is the same as (V;, V;). The graph G,
shown above is an undirected graph.

2 ii. Directed Graph: In a directed graph, each edge is

Oct 12,44 - 2M reprc-:sentefd b¥ a pair of ordered vertices, i.e., an edge has a

What is' Graph? State its specific direction.

types. In such a case, edge (Vi, V) = (V;, Vi),

Example

Oct. 2015 - 4M 0 e
What are the different . “
ways we can represent e 0

graph? Explain any one
with an example. G
!]

Directed graph

Data Structure Using G~

G,= (V,E)
V= (V,V,V,V,}
E = {(V, V). (V,, V), (V,, V). (V,, V)

For an edge (V;, V;) in a directed graph, vertex V; is called the tail and V; is the head of the
edge. V; is adjacent to V; and V; is adjacent from V.

ili. Complete Graph: If an undirected graph has 1 vertices, the maximum number of edges it can
have, nC, = n (n — 1)/2. If an undirected graph G has ‘n’ vertices and nC, edges, it is called a

complete graph.
If the graph G is directed and has n vertices, G is complete if it has n(n — 1) edges.

iv. Multigraph: A multigraph is a graph in which the set of edges may have multiple occurrences
of the same edge. Note that it is not a graph.

()

(4)
7

Example of a multigraph that is not a graph

. Degree of Vertex: The degree of a vertex in an undirected graph is the number of edges
incident to that vertex.

In the undirected graph G, the degree of each vertex = 2.

° Indegree of a Vertex: If G is a directed graph, the indegree of a vertex is the number of
edges for which it is head i.e. the numberd edges coming to it.

Example Oct.2014-2M

Howto calculate

In graph G,, indegree (Vi) =2 i d sikiiiee
. ndegree and outdegree
indegree (V;)=0 ~ofnodes ongraph?

A node whose indegree is 0, is called a source node.
® ' Qutdegree of a Vertex: If G is directed graph, the out degree of a vertex is the number
of edges for which it is the tail i.e. the number of edges going out of it.
Example
outdegree (V,)=3
outdegree (V,) =1

Deasmenngemc i e

A node whose outdegree is 0, is called a sink node.

° Adjacent Vertices: If (V;, V;) is an edge in G, then we say that

Oct. 2010 - 4M V; and V; are adjacent and the edge (V;, V)) is incident on V;
Define the following and V;.
terms: o ' C .
i. Cycle in a Graph . Path: A path from vertex V, to V, exists if there exists
. /:\%jacent V?gicesh vertices Vi, Vi,V;_such that there exist edges (V,, Vi)
iii. Indegree of Graph -

i , (Viis Vieroerenn. Vi, Vo)

vi.

Length of a Path: The length of a path is the number of edges on it.
Linear Path: A linear path is a path whose first and last vertices are distinct.

° Cycle: A cycle is a path whose first and last vertices are the same.

Example Vy V, V3 V, is a cycle in Gy A graph with no cycles is called an acyclic
graph. A directed acyclic graph is called dag.

Connected Graph: Two vertices V; and V; are said to be connected if there is a path in G
from Vi to Vj.

Strongly Connected Graph: A directed graph G is said to be strongly connected if for every
pair of distinct vertices V;, V, there is a directed path from V; to V; and also from V; to V;.

Weakly Connected Graph: A directed graph G is said to be weakly connected there exists
atleast one set of distinct vertices V;, V;, such that there is a directed path from V; to V; but no
path from V; to V.

Example: The following is a weakly connected graph because there is a path from V, to V,, but
none from V4 to V.,

Subgraph: A subgraph of G is a graph G' such that V(G") < V(G) and E(G") ¢ E(G)

Example: The subgraphs of G, are:

Subgraphs of G4

Data Structure UsingC.- .~ 2 T " Graphs

vii. Forest: A forest is defined as an acyclic graph in which every node has one or no
predecessors.

viii. Spanning Tree: When a graph G is connected, a traversal
method visits all its vertices. In this case the edges of G are
partitioned into two sets.

Apr. 2011 - 4M
Define the following
terms:

i.: Spanning Tree
ii. Cycleina Graph
iii. Adjacent Vertices
iv. In degree of Graph

T for the edges traversed.

B (Back edges) which were not traversed.

The edges in T form a tree which connects all vertices of
graph G. Such a tree is called a spanning tree.

A spanning tree consists of the minimum number of edges to connect all the vertices.

Example

DI ood il

graph) (i) (i)

Spanning trees

A graph and its spanning trees

ix. Minimal Cost Spanning Tree: The spanning tree having the minimum sum of weights of
‘edges is called minimum cost spanning tree.

These weights may represent the lengths, distances, cost, etc.

Such trees are widely used in practical applications such as network of road lines between
cities, etc.

X. Spanning Forest: A spanning forest of a graph G = (V, E) is a collection of vertex disjoint
trees T; = (V;, E), 1<i <k such that V=0 V; forall I<i<k and E; c E(G), <1<k

Data Structure UsingC - @ - : Graphs

&/
1.2 Representation of Graph

‘The graph can be represented with several forms as Adjacency Matrix and Adjacency .. .:

Adjacency Matrix Implementation

Definition: Adjacency matrix is a representation of both directed and undirectc = ap/i using two
dimensional array n x n elements where n is the number of vertices.

A |V] x [V| matrix of 0's and 1's.

This indicates value stored at any location is either O or 1 where 1 represents & 1 1ection or an edge
and 0 indicates no edge between vertices. The position is indicated by [u, v]w = weV,v ev.

Adjacency Matrix

Apr. 2015 - 4M

What is graph? Explain
its representation
techniques in details.

Non-directed graph

For a non-directed graph there will always be having symmetry along the top left to bottom right
diagonal. The diagonal will always be filled with zero's.

In adjacency matrix it is easy to calculate degree of vertex, where degree is nothing but number of
vertices connected to it. As in adjacency matrix 1 is placed at particular position i.e. u, v, if edge is
present between the vertices u, v. Hence degree of vertex v can be easily calculated as sum of all the
1s present at the row that is represented by vertex u.

Data Structure Using C @ e n e Graphis

For example degree of vertex D is 3.

Adjacency Matrix
A[B]CIDIE
A 0 1 1 0 0
B 0 0 1 0 0
C 0 0 0 1 0
D 1 0 0 0 1
E 0 0 1 0 0

Directed graph

For a directed graph there will not symmetry along the top left to bottom right diagonal. Also the
diagonal will always be filled with zero's.

In directed graph, the vertex is having two types of degrees i.e. indegree and outdegree.

1. Indegree: Indegree can be defined as number of edges that coming in at vertex from other
vertices. Hence indegree of vertex u is nothing but sum of 1s in the column that represents
vertex u. For example: indegree of vertex D is 1.

2, Outdegree: Outdegree can be defined as number of edges that going out from vertex to other
vertices. Hence, outdegree of vertex u is nothing but sum of Is in the row that represents
vertex u. For example: outdegree of vertex D is 2.

1.3 Adjacency List Implementation

Adjacency List Implementation (non-directed graph)

Definition: An adjacency list is also a representation of an undirected and directed graph with n
vertices using an array of n lists of vertices. List i contains vertex j if there is an edge from vertex i to
vertex j. An undirected graph may be represented by having vertex j in the list for vertex i and vertex
i in the list for vertex j.

| Graphs

The Adjacency list implementation typically uses less space than the adjacency matrix
implementation. It is exactly like hashing with chaining where we have a list (array) of vertices, each
of which stores a linked list of all of its neighbors

e CEE e
o A EE-EE-E - M
o [[AF-[e-{EF>
Non-directed graph E NULL

Adjacency list

In non directed graph using adjacency list it is easy to calculate degree of vertex which is nothing but
number of nodes present in its linked list.

For example, degree of vertex C is 4.

Adjacency List Implementation (directéd graph)

B NULL
¢ BT nu

Directed graph E = NULL

Adjacency list

This method is very good for problems that involve traversing a graph. Storage = [V| header
cells + 2|E]| linked list cells (since each edge in an undirected graph is counted by both vertices that it
connects). In a directed graph the 2|E| is replaced by |E|. For a graph it is much better to use the
adjacency list implementation with the storage (|V| + 2|E|) versus storage of [V[* for the adjacency
matrix implementation.

Data Structure Using G-

In directed graph using adjacency list indegree for vertex V can be calculated as the number of times,
the vertex V presents in all the linked list.

For example, degree of vertex C is 3.

Similarly outdegree of vertex V can be calculated as the number of nodes present in the linked list of
vertex V.

For example, outdegree of vertex C is 4.

Comparison with other Data Structures

Graph data structures are non-hierarchical and therefore suitable for data sets where the individual
elements are interconnected in complex ways. For example, a computer network can be modeled
with a graph. Hierarchical data sets can be represented by a binary or non binary tree. It is worth
mentioning, however, that trees can be seen as a special form of graph.

2. Shortest Path Problem

For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e. the
shortest path) between that vertex and every other vertex. It can also be used for finding costs of
shortest paths from a single vertex to a single destination vertex by stopping the algorithm once the
shortest path to the destination vertex has been determined. For example, if the vertices of the graph
represent cities and edge path costs represent driving distances between pairs of cities connected by a
direct road, the following algorithm can be used to find the shortest route between one city and all
other cities. As a result, the shortest path first is widely used in network routing protocols.

Algorithm

Let's call the node we are starting with an initial node. Let a distance of a node X be the distance
from the initial node to it. This algorithm will assign some initial distance values and will try to
improve them step-by-step.

i. Assign to every node a distance value. Set it to zero for our initial node and to infinity for all
other nodes.
ii. Mark all nodes as unvisited. Set initial node as current.

iii. For current node, consider all its unvisited neighbours and calculate their distance (from the
initial node). For example, if current node (A) has distance of 6, and an edge connecting it
with another node (B) is 2, the distance to B through A will be 6+2=8. If this distance is less

Data Structure UsingC.~ =~ o Grophs

than the previously recorded distance (infinity in the beginning, zero for the initial node),
overwrite the distance.

iv. When we are done considering all neighbours of the current node, mark it as visited. A visited
node will not be checked ever again,; its distance recorded now is final and minimal.

v. Set the unvisited node with the smallest distance (from the initial node) as the next ‘current
node’ and continue from step 3.

3. Spanning Tree

In the mathematical field of graph theory, a spanning tree T of a connected, undirected graph G is a
tree composed of all the vertices and some of the edges of G. Informally, a spanning tree of G is a
selection of edges of G that form a tree, spanning every vertex. That is, every vertex lies in the tree,
but no cycles (or loops) are formed. On the othér hand, every bridge of G must belong to T.

Spanning tree - 1 Spanning tree -2

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that
contains no cycle, or as a minimal set of edges that connect all vertices.

In certain fields of graph theory it is often useful to find a minimum spanning tree of a weighted
graph. Other optimization problems on spanning trees have also been studied, including the
maximum spanning tree, the minimum tree that spans at least k vertices, the minimum spanning tree
with at most k edges per vertex (MDST), the spanning tree with the largest number of leaves
(closely related to the smallest connected dominating set), the spanning tree with the fewest leaves

 owusing® e (@) G

:lesely related to the Hamiltonian path problem), the minimum diameter spanning tree, and the
‘niumum dilation spanning tree.

We shall be studying two algorithms for finding the Minimum Cost Spanning tree.

i. Prim’s Algorithm: This algorithm builds the minimum cost spanning tree edge by edge. The
edge to be included in the tree T is chosen according to some optimization criteria. The
criterion used here, is to select the edge (u, v) having the smallest cost such that (u, v) is not
already in the tree and T U {(uv)} is also a tree.

While including (u, v) we must ensure that it does not form a cycle. The edge addition is
repeated till T contains n—1 edges.

Let us apply this method to the following graph to obtain its minimum cost spanning tree.

Graph for Prim’s Algorithm

| EdgesWwhichhaveexactly | = S G
| oneendbelongingtothe | Select | ~ Spanning Tree
. partaltree : o e

1. |V, (V1, V2) (V1, Ve) (Vs V) 4

(V1, V2)(Vs, Ve)

Data Structure UsingC - Graphs

3. | Vi, Vs, Ve (V1, V2) (Vs, V7) (Va, Vs) vV, V) 4
4 | Vi, Vi Vs, Ve (V1, V2) (Vs, V7) (Va, V7)(V3, V) | (V3 V)
5. | Vi, Vs, Vs, Vs, Ve (V1, V2) (V2, V3) (Va, V) (V5,V7) | (V,, V)

6. | Vi, Va Vi, Ve, Vs, Ve | (V1, V2) (Va, V7) (Va, V7) (Vs, V2) | (V,, V)

7. | (V, V) ' ‘ Forms a cycle

8. |(VyV,) Forms a cycle

9. | (V,V,) Forms a cycle

Data Structure Using © . _— . Graphs

Algorithm PRIMS(E, Cost, n)
{

/* E 1s the set of edges in G, Cost is the adjacency cost
matrix, n are the number of vertices */
T={0}; /* Start with vertex 0 and no edges */
while (T contains less than n-1 edges)
{
select(u,v) from E such that cost [u,v] is minimum and ueT and veT
if(u,v) is found then
Add v to T
else
break;
}

1f(T contains fewer than n-1 edges print - No spanning tree)

}

ii. Kruskal’s Algorithm: In the Prim’s algorithm studied earlier, at any stage, the set of selected
edges must form a tree.

In the Kruskal’s algorithm, however, the set of edges may not be a tree at all stages. The set
will generally be a forest and. can be completed into a tree iff there are no cycles in the set.
The edges will be considered one by one such that it has minimum cost among the remaining
edges and does not form a cycle.

The method is simple. The spanning tree T is constructed edge by edge. We select the edges
one-by-one. We select an unvisited edge having smallest cost and add it to the partially
complete spanning tree. If the edge forms a cycle, it is not considered. When n—1 edges have
been added to the spanning tree, the process stops.

Example,

Graph for Kruskal’s Algorithm

Forms a Cycle, Reject

Forms a Cycle, Reject

vV, V)

)

2 V7)

v

(v, V,)

(V. Vy

vV, V)

Vv, V,)

A

4,

6.

Data Structure Using G @ E— e

The Algorithm can be written as follows: 2
Algorithm Kruskal (E, cost, n) Oct., Apr. 2010 - 4M.
{ . Explain Kruskal's
T = 0; /* start with a Tree having no edges */ Algorithm for minimum
While(T contains less than n-1 edges and E is spanning tree.
not empty)

{
choose edge(u,v) from E such that cost{u,v]is minimum
delete(u,v) from E
if(u,v)does not create a cycle in T

add(u,v) to T
else
discard(u, v)

}
if (T contains fewer than n-1 edges)
Print “no spanning tree”

Comparing Prim’s and Kruskal’s Algorithm

Both produce identical trees when edge weights are distinct. When G is connected, Kruskal’s cannot
produce a forest. When no weights are equal, then random edge selection cannot occur.

4. Traversal of Graphs

The traversal of graph means to visit the vertices in some systematic order. We have studied with
arious traversal methods for trees:

preorder: Visit each node before its children.
i. postorder: Visit each node after its children.

ii. inorder (for binary trees only): Visit left subtree, node, right subtree.

here are two other traversals: Breadth First Search (BFS) and Depth First Search (DFS). Both of

hese construct spanning trees with certain properties useful in other graph algorithms. These
ethods can be used for both undirected graphs, but they are both also very useful for directed
aphs.

6-16!

s

4.1 Depth-First Search (DFS)

Depth-First Search (DFS) is an algorithm for traversing or searching a tree, tree structure, or graph.
One starts at the root (selecting some node as the root in the graph case) and explores as far as
possible along each branch before backtracking. :

Definition: Formally, DFS is an uninformed search that progresses by expanding the first child node
of the search tree that appears and thus going deeper and deeper until a goal node is found, or until it
hits a node that has no children. Then the search backtracks, returning to the most recent node it
hasn't finished exploring. In a non-recursive implementation, all freshly expanded nodes are added to
a stack for exploration.

Space complexity of DFS is much lower than BFS (breadth-first search). It also lends itself much
better to heuristic methods of choosing a likely-looking branch. Time complexity of both algorithms
are proportional to the number of vertices plus the number of edges in the graphs they
traverse (O(|V| + [E]).

When searching large graphs that cannot be fully contained in memory, DFS suffers from non-
termination when the length of a path in the search tree is infinite. The simple solution of "remember
which nodes I have already seen" doesn't always work because there can be insufficient memory.
This can be solved by maintaining an increasing limit on the depth of the tree, which is called
iterative deepening depth-first search.

For the following graph:

2

Oct-,kar‘!ﬁ**m
- Explain Depth First
~ Search with an example.

® | ©
oficlc oflolG
® O oJoJo

A depth-first search starting at A, assuming that the left edges in the shown graph are chosen before
right edges, and assuming the search remembers previously-visited nodes and will not repeat them
(since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G. which is
sequentially shown in neighboring figure in sequence 1 to 7.

i. Output of a depth-first search: The most natural result of a depth first search of a graph (if it
is considered as a function rather than a procedure) is a spanning tree of the vertices reached
during the search. Based on this spanning tree, the edges of the original graph can be divided
into three classes: forward edges, which point from a node of the tree to one of its
descendants, back edges, which point from a node to one of its ancestors, and cross edges,

which do neither. Sometimes tree edges, edges which belong to the spanning tree itself, are
classified separately from forward edges. It can be shown that if the graph is undirected then
all of its edges are tree edges or back edges.

Vertex Orderings: It is also possible to use the depth-first search to linearly order the vertices
(or nodes) of the original graph (or tree). There are three common ways of doing this:

a. A preordering is a list of the vertices in the order that they were first visited by the
depth-first search algorithm. This is a compact and natural way of describing the
progress of the search. A preordering of an expression tree is the expression in Polish
notation. _

b. A postordering is a list of the vertices in the order that they were last visited by the
algorithm. A postordering of an expression tree is the expression in reverse Polish
notation.

c. A reverse postordering is the reverse of a postordering, i.c. a list of the vertices in the
opposite order of their last visit. When searching a tree, reverse postordering is the same
as preordering, but in general they are different when searching a graph.

For example, when searching the directed graph.

Beginning at node A, one visits the nodes in sequence, to produce lists either ABD B A C A,
or ACD C A B A (depending upon the algorithm chooses to visit B or C first). Note that
repeat visits in the form of backtracking to a node, to check if it has still unvisited neighbors,
are included here (even if it is found to have none). Thus the possible preorderings are
A BD Cand A CD B (order by node's leftmost occurrence in above list), while the possible
reverse postorderings are A C B D and A B C D (order by node's rightmost occurrence in
above list). Reverse postordering produces a topological sorting of any directed acyclic graph.
This ordering is also useful in control flow analysis as it often represents a natural
linearization of the control flow.

pplications

ere are some algorithms where DFS is used:

Finding connected components.

Topological sorting.

Finding 2-(edge or vertex)-connected components.
Finding strongly connected components.

Solving puzzles with only one solution, such as mazes.

Data Structure UsingC -+~ @ e Craphs

4.2 Breadth-First Search (BFS)

The breadth first search is like shortest path algorithm, but with every edge having the same length.
However it is a lot simpler and doesn't need any data structures. In this method following things are
used.

3 \ 1. A tree (the breadth first search tree),

Oct.15,Apr. 15 ~ 4M 2. A list of nodes to be added to the tree,

Explain BES with an . . .

example. 3. Markings (Boolean variables) on the vertices to tell whether

Apr. 2010 — 4M they are in the tree or list.

Explain Breadth First In graph theory, Breadth-First Search (BFS) is a graph search

Search with example. algorithm that begins at the root node and explores all the
K neighboring nodes. Then for each of those nearest nodes, it explores

their unexplored neighbor nodes, and so on, until it finds the goal.

How it works

BFS is an uninformed search method that aims to expand and examine all nodes of a graph or
combinations of sequence by systematically searching through every solution. In other words, it
exhaustively searches the entire graph or sequence without considering the goal until it finds it.
It does not use a heuristic.

From the standpoint of the algorithm, all child nodes obtained by expanding a node are added to a
FIFO queue. In typical implementations, nodes that have not yet been examined for their neighbors
are placed in some container (such as a queue or linked list) called ‘open’ and then once examined
are placed in the container ‘closed’.

Algorithm (informal)
i. Enqueue the root node.
ii. Dequeue a node and examine it.
a. If the element sought is found in this node, quit the search and return a result.
b. Otherwise enqueue any successors (the direct child nodes) that have not yet been
examined.

iii. If the queue is empty, every node on the graph has been examined -- quit the search and return
“not found”.

iv. Repeat from Step 2.

Spanning tree - 2 BFS for spanning tree - 2

In the above example, two possible spanning trees are generated from given graph and according to
the algorithm; the nodes are traversed starting from the root node to its child node.

Applications of BFS

Breadth-first search can be used to solve many problems in graph theory, for example:

i Finding all connected components in a graph.

ii. Finding all nodes within one connected component.

ili. Copying Collection, Cheney's algorithm.

iv. Finding the shortest path between two nodes u and v (in an un-weighted graph).

v. Finding the shortest path between two nodes u and v (in a weighted graph: see talk page).
vi. Testing a graph for bipartiteness.

vii. (Reverse) Cuthill-McKee mesh numbering.

Relation between BFS and DFS

BFS and DFS are very closely related to each other. (In fact in class I tried to describe a search in
which I modified the ‘add to end of list’ line in the BFS pseudocode to ‘add to start of list’ but the
resulting traversal algorithm was not the same as DFS.)

Data Stucture Using G~ @ G et

Both of these search algorithms now keep a list of edges to explore;

1

' the only difference between the two is that, while both algorithms
Apr. 2012 - 4M adds items to the end of L, BFS removes them from the beginning,
Differentiate between which results in maintaining the list as a queue, while DFS removes

DES and BES. e, .
g , them from the end, maintaining the list as a stack.

5. Applications of Graphs

Some of the applications of graphs are:

i. Graphs are used to represent Mazes (using stacks)

i, Graphs are used to diagrammatically represent Networks (computer, cities)
ili. Graph is used to represent geographic databases of Maps.

iv. Graph is used to prepare Graphics: Geometrical Objects

V. Graph is used to represent Neighborhood graphs and Voronoi diagrams.

Solved Examples

1. Explain minimal spanning tree with an example.

1
Solution
Oct. 2014 — 4M } The cost of a graph is the sum of the costs of the edges in the
weighted graph. A spanning tree of a graph G = (V, E) is called
minimal cost spanning tree or simply minimal spanning tree of G if
its cost is minimum.
Example,

' Si ii() Si i10 &
9 9 9
G T, T, T,

G: A weighted graph

T}: A spanning tree of G with cost 5+ 9 =14

T,: A spanning tree of G with cost 10 +9 =19

T;: A spanning tree of G with cost 5+ 10=15

~. Ty with cost 14 is the minimal cost spanning tree of the graph G.

)

Data Structure USing € = e @ —

“

What is graph? States its types.

State the types of graphs.

How to calculate indegree and outdegree of nodes on
graph?
Give the Adjacency Matrix and Adjacency List for the

following graph:
- O—
F—©

List the different methods for graph representation in
memory.

4 Marks

Write a function in “C” to traverse a graph using Depth
first search.

What are the different ways we can represent graph?
Explain any one with an example.

Explain BFS with an example.

What is graph? Explain its representation techniques in
details.

Write a function to read adjacency matrix and find the
node with maximum indegrees.

Write a function in “C” to traverse a graph using Breadth
First Search technique.

Explain minimal spanning tree with an example.

[Oct.15,12 — 2M]

s Graphs

[Apr.2015 — 2M]
[Oct.2014 — 2M]

Apr.2012 - 2

[Oct.11, 09 — 2M]

[0ct.2015 — 4M]

[Oct.2015 — 4M]

[Oct,15Apr.15 — 4M]

[Apr.215 — 4M]

[Oct.2014 — 4M]
[Oct.2014 — 4M]

[Oct.2014 — 4M]

[Oct.2012 — 4M]

[Apr.2012 — 4M]
[Oct.2011 — 4M]

[Apr.2011 — 4M]

[Apr.2011 — 4M]

[Oct.2010 — 4M]
[Oct., Apr. 10, — 4M]

[Oct.2010 — 4M]

[Apr.2010 — 4M]
[Oct.2009 — 4M]

[Oct.2009 — 4M]

10.

11.

12.

14.
15.

18.

Write a function to calculate Indegree and Outdegree of each
Node in the Graph.

Differentiate between DFS and BFS.

What is graph? Traverse the following graph using DFS
(Start A).

Define the following terms:

i Spanning Tree it. Cycle in a Graph

iii. Adjacent Vertices iv. Indegree of Graph
Traverse following graph using BFS, Where starting vertex is 2.

Explain Depth First Search with an example.
Explain Kruskal’s Algorithm for minimum spanning tree.
Define the following terms:
i. Cycle in a Graph ii. Adjacent Vertices
iii. Indegree of Graph
Explain Breadth First Search with example.
Traverse the following graph using DFS (Start A):

Define:
i. Degree of Graph ii. Cycle in a Graph
iii. Weighted Graph

7
vision

Suggestive Readings:

1. Birkhanser-Boston, An Introduction to Data Structures and Algorithms, Springer-New
York

2. Seymour Lipschutz, “Data Structure”, Tata McGraw Hill.

3. Horowitz, Sahni & Anderson-Freed, “Fundamentals of Data Structure in C”, Orient
Longman.

4. Trembley, J.P. And Sorenson P.G., “An Introduction to Data Structures with
Applications”, McGraw- Hill International Student Edition, New York.

5. Yedidyan Langsam, Moshe J. Augenstein and Aaron M. Tenenbaum, “Data
Structures using C”, Prentice Hall of India Pvt. Ltd., New Delhi.

6. Mark Allen Weiss, “Data structures and Algorithm Analysis in C”, Addison - Wesley
(An Imprint of Pearson Education), Mexico City, Prentice -Hall of India Pvt. Ltd.,
New Delhi.

7. Rajni Jindal, Data structure using C, Umesh Publication

8. HorowitzE, Fundamental of data structure, Galgotia Publications

	bb2334e05f29add09f5b4cb87d628aa724cbf929cbeeeff7e2339f515fd7e7b1.pdf
	2ea37599cb8e23f5803e873190ab71ff09a66e2a03a6565041b501e8d5d305ca.pdf
	587f70a7041eec7f70982ae688d76040188911ffc453e06afacc9da9ee2e7ad1.pdf
	695be5ad44dc79809e78717d7f328b914dfea779de349fa8d7d20321cfda0b72.pdf
	Microsoft Word - Data Structure using C BCA SEM-3

